\(a^4+b^4\ge a^3b+ab^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Ta có: \(a^4+b^4\ge2a^2b^2\) (BĐT Cô-si)                                                                                                                                                          \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)2a^2b^2\)                                                                                                                                                 \(\Leftrightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)\left(a^2b^2+a^2b^2\right)\ge\left(a^3b+ab^3\right)^2\) (BĐT Bunhiacopxki)                                                         \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^3b+ab^3\right)^2\)                                                                                                                                                 \(\Rightarrow a^4+b^4\ge a^3b+ab^3\)      (ĐPCM) 

8 tháng 8 2019

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )

vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)

11 tháng 9 2016

Ta có a+ b- a3 b - ab= (a - b)(a3 - b3)

= (a -b)2 (a2 + ab + b2)

= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)

Ta lại có a4 + b4 \(\ge2a^2b^2\)

Từ đó => 2(a4 + b4\(\ge\)ab3 + a3 b + 2 a2 b2

11 tháng 10 2020

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)

30 tháng 1 2019

Áp dụng BĐT Bunhiacopxki, ta có:

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\ge4a^2b^2\)(BĐT Cô-si)

Có: \(ab^3+a^3b=ab\left(a^2+b^2\right)\)

Áp dụng BĐT Cô-si, ta có:

\(ab\left(a^2+b^2\right)\ge2a^2b^2\)

\(\Rightarrow ab^3+a^3b+2a^2b^2\ge4a^2b^2\)

Vậy VT=VP.

Ta có đpcm.

16 tháng 2 2019

bn vô câu hỏi tương tự có hết nhé

7 tháng 12 2017

Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)

\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\)                   \(\left(1\right)\)

Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)

                                         \(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\)                          \(\left(2\right)\)

Từ (1) và (2) suy ra  \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)

Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b

8 tháng 10 2019

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4-2ab^3-2a^3b+2a^2b^2\ge0\)

\(\Leftrightarrow a^3\left(a-2b\right)-b^3\left(a-2b\right)+2a^2b^2\ge0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)\left(a^2+ab+b^2\right)+2a^2b^2\ge0\left(1\right)\)

Do BĐT trên đối xứng,ko mất tính tổng quát giả sử \(a\le b\)

Khi đó \(\left(a-2b\right)\left(a-b\right)\left(a^2+2ab+b^2\right)\ge0\)

\(\Rightarrow\left(1\right)\ge0\left(true\right)\)

P/S:E ko bt chỗ giả sử có đúng ko nx:(((

8 tháng 10 2019

\(\left(a-b\right)\left(a-2b\right)\left(a^2+ab+b^2\right)\ge0\) ạ.em viết nhầm:(((

29 tháng 9 2018

Trả lời:

a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)

Ta có: a + b\(\ge\)\(2\sqrt{ab}\)

b+c\(\ge\)\(2\sqrt{bc}\)

c+a\(\ge\)\(2\sqrt{ca}\)

\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)

b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)

Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b

\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab

CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab

\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab

= 2(a2+b2)+2ab =6(đpcm)

c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a

Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)

\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)

\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)

Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc

\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc

\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)

Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc

\(\Leftrightarrow\) 1 \(\ge\) 8abc

\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)

Từ (1),(3) kết hợp với (2)

\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)