Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )
vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)
Ta có a4 + b4 - a3 b - ab3 = (a - b)(a3 - b3)
= (a -b)2 (a2 + ab + b2)
= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)
Ta lại có a4 + b4 \(\ge2a^2b^2\)
Từ đó => 2(a4 + b4) \(\ge\)ab3 + a3 b + 2 a2 b2
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\ge4a^2b^2\)(BĐT Cô-si)
Có: \(ab^3+a^3b=ab\left(a^2+b^2\right)\)
Áp dụng BĐT Cô-si, ta có:
\(ab\left(a^2+b^2\right)\ge2a^2b^2\)
\(\Rightarrow ab^3+a^3b+2a^2b^2\ge4a^2b^2\)
Vậy VT=VP.
Ta có đpcm.
Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)
\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\) \(\left(1\right)\)
Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)
\(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)
Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4-2ab^3-2a^3b+2a^2b^2\ge0\)
\(\Leftrightarrow a^3\left(a-2b\right)-b^3\left(a-2b\right)+2a^2b^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)\left(a^2+ab+b^2\right)+2a^2b^2\ge0\left(1\right)\)
Do BĐT trên đối xứng,ko mất tính tổng quát giả sử \(a\le b\)
Khi đó \(\left(a-2b\right)\left(a-b\right)\left(a^2+2ab+b^2\right)\ge0\)
\(\Rightarrow\left(1\right)\ge0\left(true\right)\)
P/S:E ko bt chỗ giả sử có đúng ko nx:(((
\(\left(a-b\right)\left(a-2b\right)\left(a^2+ab+b^2\right)\ge0\) ạ.em viết nhầm:(((
Trả lời:
a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)
Ta có: a + b\(\ge\)\(2\sqrt{ab}\)
b+c\(\ge\)\(2\sqrt{bc}\)
c+a\(\ge\)\(2\sqrt{ca}\)
\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)
b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)
Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b
\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab
CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab
\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab
= 2(a2+b2)+2ab =6(đpcm)
c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a
Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)
\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)
\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)
Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc
\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc
\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)
Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc
\(\Leftrightarrow\) 1 \(\ge\) 8abc
\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)
Từ (1),(3) kết hợp với (2)
\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)
Ta có: \(a^4+b^4\ge2a^2b^2\) (BĐT Cô-si) \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)2a^2b^2\) \(\Leftrightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)\left(a^2b^2+a^2b^2\right)\ge\left(a^3b+ab^3\right)^2\) (BĐT Bunhiacopxki) \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^3b+ab^3\right)^2\) \(\Rightarrow a^4+b^4\ge a^3b+ab^3\) (ĐPCM)