Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a4 + b4 >= a^3b+ab^3
<=> a^4 + b^4 - a^3b + ab^3>=0
<=> a^3(a-b) - b^3(a-b)>=0
<=> (a-b)(a^3-b^3)>=0
<=> (a-b)^2(a^2+ab+b^2)>=0
(a-b)^2 >=0 (luôn luôn); a^2+ab+b^2>=0
a4 + b4 >= a^3b+ab^3
<=> a^4 + b^4 - a^3b + ab^3>=0
<=> a^3(a-b) - b^3(a-b)>=0
<=> (a-b)(a^3-b^3)>=0
<=> (a-b)^2(a^2+ab+b^2)>=0
(a-b)^2 >=0 (luôn luôn); a^2+ab+b^2>=0
\(a^4+b^4-ab^3-a^3b\ge0\)
\(\Leftrightarrow\left(a^4-ab^3\right)+\left(b^4-a^3b\right)\ge0\)
\(\Leftrightarrow a\left(a^3-b^3\right)-b\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
(Luôn đúng vì \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{b^2}{4}\ge0\))
Vậy có đpcm.
Bài làm
Ta có: a4 + b4 > a3b + ab3
=> a4 + b4 - a3b - ab3 > 0
=> a3( a - b ) + b3( a - b ) > 0
=> ( a3 + b3 )( a - b ) > 0
Ta xét ( a + b )( a2 - ab + b2 )( a - b ) > 0
=> ( a2 - b2 )( a2 - ab + b2 ) > 0
<=> \(\orbr{\begin{cases}a^2-b^2=0\\a^2-ab+b^2=0\end{cases}}\)
chứng minh tích trên lớn hơn 0 nx là ok.
a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
Dấu "=" xảy ra khi a = b
b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)
c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)
\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)
\(\Rightarrow a^4+b^4+2\ge4ab\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)
Bài làm
Ta có: a > b
=> 3a > 3b
=> 3a + 4 > 3b + 4 (1)
Mà 4 > 3
=> 3b + 4 > 3b + 3 (2)
Từ (1) và (2) => 3a + 4 > 3b + 3 ( đpcm )
a^4 + b^4 >= a^3.b + a.b^3
<=> a^3(a-b) - b^3(a-b) >=0
<=> (a^3-b^3).(a-b)>=0
<=> (a-b)^2. (a^2+ab+b^2)>=0
<=> (a-b)^2. [(a+1/2.b)^2+3/4.b^2]>=0
BĐT cuối cùng luôn luôn đúng nên suy ra BĐT đầu đúng
(Dấu = xảy ra khi a=b)
CHÚC BẠN HỌC TỐT