Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(43x^3y^3-32x^2y^2\)
\(=x^2y^2\left(43xy-32\right)\)
b) \(ax-bx+ab-x^2\)
\(=\left(ax+ab\right)-\left(bx+x^2\right)\)
\(=a\left(b+x\right)-x\left(b+x\right)\)
\(=\left(a-x\right)\left(b+x\right)\)
c) \(12a^2b-18ab^2-30b^2\)
\(=6b\left(2a^2-3ab-5b\right)\)
d) \(27a^2\left(b-1\right)-9a^3\left(1-b\right)\)
\(=27a^2\left(b-1\right)+9a^3\left(b-1\right)\)
\(=\left(27a^2+9a^3\right)\left(b-1\right)\)
\(=9a^2\left(b-1\right)\left(a+3\right)\)
a) 3x\(\left(x-1\right)^2\)-\(\left(1-x\right)^3\)
= 3x\(\left(x^2-2x+1^2\right)\)-\(\left(1-x\right)^3\)
= \(3x^3\)-\(6x^2\)+3x-\(\left(1-x\right)^3\)
= \(3x^3\)-\(6x^2\)+3x-\(\left(1^3-3\cdot1^2\cdot x+3\cdot1\cdot x^2-x^3\right)\)
= \(3x^3-6x^2+3x-\left(1-3x+3x^2-x^3\right)\)
= \(3x^3-6x^2+3x-1+3x-3x^2+x^3\)
= \(3x^3+x^3-6x^2-3x^2+3x+3x-1\)
\(4x^3-9x^2+6x-1\)
----------------------------------------------
b) \(3x\left(x+2\right)+5\left(-x-2\right)\)
= \(3x^2+6x+\left[5\left(-x\right)-10\right]\)
= \(3x^2+6x+5\left(-x\right)-10\)
không biết mình làm thế này có quá gọn không nhỉ :|
-----------------------------------------------
c) \(x\left(x-y\right)+\left(x-y\right)\)
= \(x^2-xy+\left(x-y\right)\)
= \(x^2-xy+x-y\)
------------------------------------------------
d) \(12a^2b-18ab^2-30b^3\)
Theo mình ở câu này bạn ghi thiếu. Ở câu này hằng dẳng thức ta sử dụng là \(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\), nếu bạn cung cấp dữ kiện \(A^3\) thì mình mới làm được nếu không thì câu này gọn sẵn rồi :))
------------------------------------------------
e) \(2x\left(x-2\right)-\left(2-x\right)^2\)
= \(2x^2-4x-\left(2^2-2\cdot2\cdot x+x^2\right)\)
= \(2x^2-4x-4+4x-x^2\)
= \(2x^2-x^2-4x+4x-4\)
= \(x^2-4\)
-------------------------------------
Chúc bạn học tốt !
ủa mik nhờ cậu lm theo cách bài phân tchs đa thức thành phân tử = phương pháp đặt nhân tử chung cơ
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
a: \(=5x\left(2xy^2+x^2y^4+1\right)\)
\(=5x\left(xy^2+1\right)^2\)
b: \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c: \(250y^3-\dfrac{2}{27}x^3\)
\(=2\left(125y^3-\dfrac{1}{27}x^3\right)\)
\(=2\left(5y-\dfrac{1}{3}x\right)\left(25y^2+\dfrac{5}{3}xy+\dfrac{1}{9}x^2\right)\)
a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)
\(=x^4-y^4\)
Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:
\(A=2^4-\left(-\frac{1}{2}\right)^4\)
\(=16-\frac{1}{16}\)
\(=\frac{255}{16}\)
Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)
b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\)
Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:
\(B=3^5-\left(-2\right)^5\)
\(=243-\left(-32\right)\)
\(=243+32=275\)
Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2
c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)
\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)
\(=x^4-2x^3y+2y^4+2x^3\)
Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:
\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)
\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)
\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)
\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)
Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)
\(a,10.a^6+20a^5=10a^5\left(a+2\right)\)
\(b,5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
\(c,3ab^3+6ab^2-18ab=3ab\left(b^2+2b-1\right)\)
\(d,15x^3y^2+10x^2y^2-20x^2y^3=5x^2y^2\left(3x+2-4y\right)\)
\(e,a^2\left(x-1\right)-b\left(1-x\right)=a^2\left(x-1\right)+b\left(x-1\right)=\left(x-1\right)\left(a^2+b\right)\)
\(f,x\left(x-5\right)-4\left(5-x\right)=x\left(x-5\right)+4\left(x-5\right)=\left(x-5\right)\left(x+4\right)\)
(mk sửa lại thứ tự là a,b,c,d,e,f nha)
chúc bn học tốt
\(1,10a^6+20a^5=10a^5\left(a+10\right)\)
\(2,5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)^2\)
\(3,3ab^3+6ab^2-18ab\)
\(=3ab\left(b^2+2b-6\right)\)
\(4,15x^3y^2+10x^2y^2-20x^2y^3\)
\(=5x^2y^2\left(3x+2-4y\right)\)
\(5,a^2\left(x-1\right)-b\left(1-x\right)\)
\(=a^2\left(x-1\right)+b\left(x-1\right)\)
\(=\left(x-1\right)\left(a^2+b\right)\)
\(6,x\left(x-5\right)-4\left(5-x\right)\)
\(=x\left(x-5\right)+4\left(x-5\right)\)
\(=\left(x+4\right)\left(x-5\right)\)