Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3+4\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3+4-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Leftrightarrow-3\left(x^2+2x-4\right)=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow x^2+2x+1=5\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\Leftrightarrow x=\pm\sqrt{5}-1\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3-8+12\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3+4\right)\)
\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+6x-8+6x^2-x^3-4\)
\(P\left(x\right)-Q\left(x\right)=3x^2+6x-4\)
Ta cần phân tích \(3x^2+6x-4\) thành nhân tử
Ta có:\(P\left(x\right)-Q\left(x\right)=-\frac{1}{3}\left(-9x^2-18x+12\right)\)
\(=-\frac{1}{3}\left[21-\left(9x^2+18x+9\right)\right]\)
\(=-\frac{1}{3}\left[21-\left(3x+3\right)^2\right]\)
\(=-\frac{1}{3}\left(\sqrt{21}-3x-3\right)\left(\sqrt{21}+3x+3\right)\)
\(\Rightarrow x=\frac{\sqrt{21}-3}{3};x=\frac{-\sqrt{21}-3}{3}\)
a) \(A=\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(2^2.5\right)^4}{5^{2^5}.\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{\left(5^{10}:5^8\right).\left(2^{10}:2^8\right)}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}\)
b) \(B=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)\(=\frac{2^3+2^3}{1}=\frac{8+8}{1}=16\)
c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\right)\)
\(\Rightarrow C=1-\frac{1}{2^{100}}\)
d) \(D=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{100}}\)
\(\Rightarrow5D=5+1+\frac{1}{5^2}+\frac{1}{5^3}+...........+\frac{1}{5^{101}}\)
\(\Rightarrow5D-D=\left(5+1+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{101}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..........+\frac{1}{5^{100}}\right)\)
\(\Rightarrow4D=5-\frac{1}{5^{101}}\)
\(\Rightarrow D=\frac{5-\frac{1}{5^{101}}}{4}\)
a) \(A=\frac{5^4x20^4}{25^5x4^5}=\frac{5^4x\left(2^2x5\right)^4}{\left(5^2\right)^5x\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2x2^2}=\frac{1}{25.4}=\frac{1}{100}\)
b) \(B=\frac{2^{30}x5^7+2^{13}x5^{27}}{2^{27}x5^7+2^{10}x5^{27}}=\frac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}=2^3=8\)
c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)
\(C=1-\frac{1}{2^{100}}\)
phần d bn lm tương tự như phần c nha!
a. \(y=f\left(x\right)=\left(-1\right)^2-1-2=-2\)
.\(y=f\left(10\right)=10^2+10-2=108\)
\(y=f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+\frac{1}{2}-2=\frac{-5}{4}\)
\(y=f\left(2\right)=2^2+2-2=4\)
b.Có \(f\left(x\right)=0\)
\(\Rightarrow x^2+x-2=0\)
\(x^2+2x-x-2=0\)
\(\left(x^2-x\right)+\left(2x-2\right)=0\)
\(x\left(x-1\right)+2\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+2\right)=0\)
\(\cdot TH1.x-1=0\Rightarrow x=1\)
\(\cdot TH2.x+2=0\Rightarrow x=-2\)
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
a)\(f\left(x\right)=5+3x^2-x-2x^2\)
\(f\left(x\right)=x^2-x+5\)
\(g\left(x\right)=3x+3-x-x^2\)
\(g\left(x\right)=-x^2+2x+3\)
b)\(f\left(x\right)+g\left(x\right)=x^2-x+5-x^2+2x+3\)
\(f\left(x\right)+g\left(x\right)=x+8\)
c) \(f\left(x\right)-H\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow H\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^2-x+5-\left(-x^2+2x+3\right)\)
\(\Leftrightarrow H\left(x\right)=x^2-x+5+x^2-2x-3\)
\(\Leftrightarrow H\left(x\right)=2x^2-3x+2\)
#H
a, 5n+5n+2=650
=>5n+5n.52=650
=>5n(1+25)=650
=>5n.26=650
=>5n=25
=>5n=52
=>n=2
Vậy n=2
b, x-2+3x =10 =>2.(2x-1)=2.5 =>4x-2=10 =>4x=10+2 =>4x=12 =>x=12:4 => x=3 Vậy x=3. Mk làm đại đúng thì đúng sai thì sai nha nhg mk đoán thì đúng
a)3x−1+5.3x−1=162
⇔6.3x−1=162
⇔3x−1=27
⇔3x−1=33
⇔x−1=3
⇔x=4