\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+3+4+...+100}\)

tính A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Ta có:

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+4+...+100}\)

\(A=3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+100}\right)\)

Đặt \(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+100}\), khi đó ta đc:

\(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+100}\)

Vì tổng số hạng bằng (số cuối + số đầu) . số số hạng : 2 nên ta có:

\(B=1+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+100\right).100:2}\)

\(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\)

\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=2.\left(1-\frac{1}{101}\right)\)

\(B=2.\frac{100}{101}=\frac{200}{101}\)

Ta có:

\(A=3.B\Rightarrow A=3.\frac{200}{101}=\frac{600}{101}\)

Vậy \(A=\frac{600}{101}\)

6 tháng 5 2016

để mình giúp  hihi

5 tháng 1 2017

Câu 2)

Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)

\(\Leftrightarrow9\ge4\left(ab+2\right)\)

\(\Rightarrow9\ge4ab+8\)

\(\Rightarrow1\ge4ab\)

Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )

5 tháng 1 2017

Câu 3)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

\(a+b+c=1\)

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si

\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)

\(\Rightarrow\) ĐPCM

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

18 tháng 6 2016

Câu 2 :

b) \(\frac{x}{3}=\frac{-2}{9}\)

=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)

c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)

=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)

=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)

=> x = \(\frac{7}{12}:\frac{-1}{6}\)

=> x =\(\frac{-7}{2}\)

18 tháng 6 2016

Đề 1 câu 5 :

\(3B=3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow2B=3B-B=3^{201}-3\)

\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)

Do đó n = 201

10 tháng 8 2019

1.

C/m bổ đề: \(a^3-b^3\ge\frac{1}{4}\left(a^3-b^3\right)\) với \(\forall a,b\in R,a\ge b\)

\(\Leftrightarrow4a^3-4b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\ge0\)

\(\Leftrightarrow3a^3+3a^2b-3ab^2-3b^3\ge0\)

\(\Leftrightarrow3\left(a^2-b^2\right)\left(a+b\right)\ge0\)

\(\Leftrightarrow3\left(a+b\right)^2\left(a-b\right)\ge0\)(đúng)

Theo bài ra: \(a^3-b^3\ge3a-3b-4\)

\(\Leftrightarrow\) Cần c/m: \(\left(a-b\right)^3\ge12a-12b-16\)(1)

Thật vậy:

\(\left(1\right)\)\(\Leftrightarrow\left(a-b\right)^3-12\left(a-b\right)+16\ge0\)

\(\Leftrightarrow\left[\left(a-b\right)^3-8\right]-12\left(a-b-2\right)\ge0\)

\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a-b\right)+4\right]-12\left(a-b-2\right)\ge0\)

\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a+b\right)-8\right]\ge0\)

\(\Leftrightarrow\left(a-b-2\right)^2\left(a-b+4\right)\ge0\) (đúng với mọi a,b thỏa mãn \(a,b\in R,a\ge b\))

10 tháng 8 2019

2.

\(BĐT\Leftrightarrow\frac{1}{\frac{a+b}{ab}}+\frac{1}{\frac{c+d}{cd}}\le\frac{1}{\frac{a+b+c+d}{\left(a+c\right)\left(b+d\right)}}\)

\(\Leftrightarrow\frac{ab}{a+b}+\frac{cd}{c+d}\le\frac{\left(a+c\right)\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\frac{ab\left(c+d\right)+cd\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}\le\)\(\frac{ab+ad+bc+cd}{a+b+c+d}\)

\(\Leftrightarrow\frac{abc+abd+acd+bcd}{ac+ad+bc+bd}\le\frac{ab+ad+bc+cd}{a+b+c+d}\)

\(\Leftrightarrow\left(ad+ab+bc+cd\right)\left(ac+ad+bc+bd\right)\ge\)\(\left(a+b+c+d\right)\left(abc+abd+acd+bcd\right)\)

\(\Leftrightarrow\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng với mọi a,b,c,d>0)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

25 tháng 3 2020
https://i.imgur.com/RNvPnWr.jpg
25 tháng 3 2020
https://i.imgur.com/puIQxgp.jpg