Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)
\(3A-A=1-\dfrac{1}{3^{2018}}\)
\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)
\(b,B=1+5+5^2+5^3+...+5^{100}\)
\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=1-5^{101}\)
\(B=\dfrac{\left(1-5^{101}\right)}{4}\)
a) 1 + 2 - 3 -4 +5 + 6 -7- 8+...+ 97 +98-99-100
= (1 + 2 - 3 -4) +(5 + 6 -7- 8)+...+ (97 +98-99-100)
= (-4) .25
= -100
a)Đặt A=1+2-3-4+5+6-7-8+................+97+98-99-100
Có 100 số hạng
A=(1+2-3-4)+(5+6-7-8)+................+(97+98-99-100)
Có 100:4=25 nhóm
A=(-4)+(-4)+(-4)+......................+(-4)
Có 25 số hạng
A=(-4).25=(-100)
Vậy A=(-100)
b)Đề sai nha;đề:1+3-5-7+9+11-............-397-399
Đặt B=1+3-5-7+9+11-............-397-399
Có (399-1):2+1=200 số hạng
B=(1+3-5-7)+(9+11-13-15)+.............+(375+377-397-399)
Có 200:4=50 nhóm
B=(-8)+(-8)+.....................+(-8)
Có 50 số hạng
B=(-8).50=(-400)
Vậy B=(-400)
Chúc bn học tốt
bài 1 mifk viết sai nha.
bài 1: cho A=1+3+3\(^2\)+3\(^3\)+...+3\(^{10}\).Tìm số tự nhiên n biết 2 x A + 1 = 3\(^n\)
B1:
\(A=1+3+3^2+3^3+...+3^{10}\\ 3A=3+3^2+3^3+3^4+...+3^{11}\\ 3A-A=3^{11}-1\\ \Rightarrow A=\frac{3^{11}-1}{2}\)
mấy câu khác tương tự nha
@@@) Ta có: \(A=\frac{5^{2016}+4}{5^{2015}+4}\Rightarrow\frac{1}{5}A=\frac{5^{2016}+4}{5^{2016}+20}=1+\frac{-16}{5^{2016}+20}\)
\(B=\frac{5^{2014}+4}{5^{2013}+4}\Rightarrow\frac{1}{5}B=\frac{5^{2014}+4}{5^{2014}+20}=1+\frac{-16}{5^{2014}+20}\)
Ta thấy: \(1+\frac{-16}{5^{2016}+20}>1+\frac{-16}{5^{2014}+20}\) =>\(\frac{1}{5}A>\frac{1}{5}B\Rightarrow A>B\)
Bài thứ 2 sai để nhé hai cái đó = nhau mà
10.
\(J=\dfrac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\\ =\dfrac{1\cdot2+2\cdot1\cdot2\cdot2+3\cdot1\cdot3\cdot2+4\cdot1\cdot4\cdot2+5\cdot1\cdot5\cdot2}{3\cdot4+2\cdot3\cdot2\cdot4+3\cdot3\cdot3\cdot4+4\cdot3\cdot4\cdot4+5\cdot3\cdot4\cdot4}\\ =\dfrac{\left(1\cdot2\right)\cdot\left(1+2\cdot2+3\cdot3+4\cdot4+5\cdot5\right)}{\left(3\cdot4\right)\cdot\left(1+2\cdot2+3\cdot3+4\cdot4+5\cdot5\right)}\\ =\dfrac{1\cdot2}{3\cdot4}\\ =\dfrac{1\cdot1}{3\cdot2}\\ =\dfrac{1}{6}\)
11.
\(K=3^0+3^1+3^2+...+3^{100}\\ =1\cdot\left(3^0+3^1+3^2+...+3^{100}\right)\\ =\dfrac{3-1}{2}\cdot\left(3^0+3^1+3^2+...+3^{100}\right)\\ =\dfrac{\left(3-1\right)\cdot\left(3^0+3^1+3^2+...+3^{100}\right)}{2}\\ =\dfrac{3^1-3^0+3^2-3^1+3^3-3^2+...+3^{101}-3^{100}}{2}\\ =\dfrac{3^{100}-3^0}{2}=\dfrac{3^{100}-1}{2}\)
12.
\(L=1-5+5^2-5^3+...+5^{98}-5^{99}\\ =1\cdot\left(1-5+5^2-5^3+...+5^{98}-5^{99}\right)\\ =\dfrac{5+1}{6}\cdot\left(1-5+5^2-5^3+...+5^{98}-5^{99}\right)\\ =\dfrac{\left(5+1\right)\cdot\left(1-5+5^2-5^3+...+5^{98}-5^{99}\right)}{6}\\ =\dfrac{5+1-5^2-5+5^3+5^2-5^4-5^3+...+5^{99}+5^{98}-5^{100}-5^{99}}{6}\\ =\dfrac{1-5^{100}}{6}\)
\(3A=3^1+3^2+3^3+...+3^{101}\Rightarrow3A-A=\left(3^1+3^2+...+3^{101}\right)-\left(3^0+3^1+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3^0=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)
\(B=1-5+5^2-5^3+.............+5^{98}-5^{99}\)
\(5B=5-5^2+5^3-5^4+...................+5^{99}-5^{100}\)
\(5B+B=5^{100}+1\Rightarrow6B=5^{100}+1\Rightarrow B=\frac{5^{100}+1}{6}\)