K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

Đề bài là gì thế bạn?

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)

=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)

=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)

=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)

b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Lời giải:

\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)

Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$

$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$

$\Rightarrow A>B$

thầy ơi vì sao \(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)lolang

26 tháng 4 2020

Đặt A = \(3-3^2+3^3-3^4+...+3^{2019}-3^{2020}\)

3A = \(3^2-3^3+3^4-3^5+...+3^{2020}-3^{2021}\)

4A = \(3-3^{2021}\)

A = \(\frac{3-3^{2021}}{4}\)

Vậy .......

Hok tốt

Đặt \(A=3-3^2+...+3^{2019}-3^{2020}\)

\(3A=3^2-3^3+...+3^{2020}-3^{2021}\)

\(3A+A=\left(3^2+...-3^{2021}\right)+\left(3-3^2...-3^{2020}\right)\)

\(4A=3-3^{2021}\)

\(A=\frac{3-3^{2021}}{4}\)

hok tốt!!

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

19 tháng 6 2019

=>3B=1+1/3+1/3^2+...+1/3^2019

=>3B-B=(1+1/3+1/3^2+...+1/3^2019)-(1/3+1/3^2+1/3^3+...+1/3^2020)

<=>2B=1-1/3^2020= \(\frac{3^{2020}-1}{3^{2020}}\)

\(\Rightarrow B=\frac{3^{2020}-1}{3^{2020}.2}\)

19 tháng 6 2019

#)Giải :

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2020}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\)

\(3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2020}}\right)\)

\(2B=1-\frac{1}{3^{2020}}\)

\(B=\frac{1-\frac{1}{3^{2020}}}{2}\)