Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
\(a,\left(2x-1\right)^2=49\)
\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4x^2+28x+49=9x^2+36x+36\)
\(4x^2+28x+49-9x^2-36x-36=0\)
\(-5x^2-8x+13=0\)
\(5x^2+13-5x-13=0\)
\(x\left(5x+13\right)-1\left(5x+13\right)=0\)
\(\left(x-1\right)\left(5x+13\right)=0\)
\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)
\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(x=-5\)
\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(25x^2-30x+9-16x^2+56x-49=0\)
\(9x^2+26x-40=0\)
\(9x^2+36x-10x-40=0\)
\(9x\left(x+4\right)-10\left(x+4\right)=0\)
\(\left(9x-10\right)\left(x+4\right)=0\)
\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
a) 4x(3x-7)-6(2x2-5x+1)=12
=>4x.3x-4x.7-6.2x2-6.(-5x)-6.1=12
=>12x2-28x-12x2+30x-6=12
=>2x-6 =12
=>2x =12+6
=>2x =18
=>x =18:2
=>x =6
b)(5x+3)(4x-1)+(10x-7)(-2x+3)=27
=>5x.4x-5x.1+3.4x+3.(-1)+10x.(-2x)+10x.3-7.-(2x)-7.3=27
=>20x2-5x+12x-3-20x2+30x+14x-21=27
=>39x-36 =27
=>39x =27+36
=>39x =63
=>x =63:39
=>x =21/13
c) (8x-5)(3x+2)-(12x+7)(2x-1)=17
=>8x.3x+8x.2-5.3x-5.2-12x.2x-12x.(-1)+7.2x+7.(-1)=17
=>24x2+16x-15x-10-24x2+12x+14x-7=17
=>27x-17 =17
=>27x =17+17
=>27x =34
=>x =34:27
=>x =34/27
d) (5x+9)(6x-1)-(2x-3)(15x+1)=-190
=>30x2-5x+63x-9 - 30x2-2x-45x-3=-190
=>11x-12 =-190
=>11x =-190+12
=>11x =-178
=>x = -178:11
=>x =-178/11
dài wa,lm xong chắc đến năm sau
1)A=3(x-1)^2-(x+1)^2+2(x-3)(x+3)-(2x+3)^2-(5-20x)
=3(x^2-2x+1)-(x^2+2x+1)+2(x^2-9)-(4x^2+12x+9)-(5-20x)
=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+20x
=-30
2)B=5x(x-7)(x+7)-x(2x-1)^2-(x^3+4x^2-246x)-175
=5x(x^2-49)-x(4x^2-4x+1)-x^3-4x^2+246x-175
=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175
=-175
cn lại lm tg tự nha bn
Mình hỏi một câu nhé
Ko phụ thuộc vào giá trị của biến là gì
vì mình mới học nên đọc cx ko hiểu
Mong bạn giải thích hộ mình
Cảm ơn bạn nhiều
\(\left(2x-1\right)^2=49\)
\(\Rightarrow\left(2x-1\right)^2=7^2\)
\(\Rightarrow\left(2x-1\right)^2=7\)
\(\Rightarrow\orbr{\begin{cases}2x-1=-7\\2x-1=7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
a) \(\left(2x-1\right)^2=49\)
<=> \(\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\left(n\right)\\x=-3\left(n\right)\end{cases}}\)
b) \(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
<=> \(\left(5x-3-4x+7\right)\left(5x-3+4x-7\right)=0\)
<=> \(\orbr{\begin{cases}x=-4\left(n\right)\\x=\frac{10}{9}\left(n\right)\end{cases}}\)