![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\\\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-5c}{b-5d}\end{matrix}\right.\Rightarrow\dfrac{3a+2c}{3b+2d}=\dfrac{a-5c}{b-5d}\)
Vậy.........(đpcm)
b, Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\end{matrix}\right.\)
Vậy..............(đpcm)
Chúc bạn học tốt!!!
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{a-5c}{b-5d}\)
\(\Rightarrow\dfrac{3a-2b}{3b-2c}=\dfrac{a-5c}{b-5d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt\(\frac{a}{b}=\frac{c}{d}=k\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)
Ta lại có \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(3\right)\)
Thay \(\left(1\right),\left(2\right)vào\left(3\right)có\)
\(\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(4\right)\)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(5\right)\)
Từ \(\left(4\right),\left(5\right)\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)
Vậy \(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)
Bài 2:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có: \(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{k^2.\left(b^2-d^2\right)}{b^2-d^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Bài 3: Tương tự nhé bạn chỉ cần thay a = bk, c = dk vào thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{3a^2}{3b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{3a^2+c^2}{3b^2+d^2}\left(đpcm\right)\)
a/b= c/d -> a/c=b/d= ( a-c)/( b-d) -> a2/c2=b2/d2=(a-b)2/(c-d)2
<-. a2/c2=b2/d2=3a2/3c2=2b2/2d2=( 3a2+2b2)/ (3c2+2d2)
-> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Doãn Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
a) 2a²x³ - ax³ - a⁴ - x³a² - ax³ - 2x⁴
= 2a²x³ - ax³ - a⁴ - a²x³ - ax³ - 2x⁴
= ( 2a²x³ - a²x³ ) - ( ax³ + ax³ ) - a⁴ - 2ax⁴
= a²x³ - 2ax³ - a⁴ - 2ax⁴
b) 3xx⁴ + 4xx³ - 5x²x³ - 5x²x²
= 3x⁵ + 4x⁴ - 5x⁵ - 5x⁴
= ( 3x⁵ - 5x⁵ ) + ( 4x⁴ - 5x⁴ )
= -2x⁵ - x⁴
c) 3a - 4b² - 0,8b . 4b² - 2ab . 3b + b . 3b² - 1
= 3a - 4b² - 3,2b³ - 6ab² + 3b³ - 1
= 3a - 4b² - 0,2b³ - 6ab² - 1
d) 5x.2y² - 5x.3xy - x²y + 6xy²
= 10xy² - 15x²y - x²y + 6xy²
= ( 10xy² + 6xy² ) - ( 15x²y + x²y )
= 16xy² - 16x²y