Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2=a^2+b^2+c^2\ge b^2+c^2\ge2bc\Rightarrow bc\le1\)
Ta có:
\(P^2=\left(a+b+c-abc\right)^2=\left[a\left(1-bc\right)+\left(b+c\right).1\right]^2\)
\(P^2\le\left[a^2+\left(b+c\right)^2\right]\left[\left(1-bc\right)^2+1\right]\)
\(P^2\le\left(a^2+b^2+c^2+2bc\right)\left(b^2c^2-2bc+2\right)\)
\(P^2\le\left(2+2bc\right)\left(b^2c^2-2bc+2\right)\)
\(P^2\le2\left[\left(bc\right)^3-\left(bc\right)^2+2\right]\le2.2=4\)
\(\Rightarrow-2\le P\le2\)
Min, max xảy ra với \(\left(a;b;c\right)=\left(0;-1;-1\right)\) và \(\left(0;1;1\right)\) và các hoán vị
Dạ em mới chỉ biết tìm Min thôi ạ!
Ta có: \(a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow3\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow\sqrt[3]{abc}\le1\)
\(\Rightarrow abc\le1\)
\(\Rightarrow P=a+b+c-\frac{1}{2}abc\)
\(\ge3-\frac{1}{2}.1=\frac{5}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Để em nghĩ tìm Max đã ạ!
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.