Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
\(\left(x+1\right)\left(x^2-x-x^2+x-1\right)=-\left(x+1\right)\)
\(\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=-4a^2\)
\(\left(a^2+b^2+c^2+a^2-b^2-c^2\right)\left(a^2+b^2+c^2-a^2+b^2+c^2\right)=2a^2\left(2b^2+2c^2\right)=4a^2b^2+4a^2c^2\)
\(\left(a-5\right)^2\left(a+5\right)^2=\left(a^2-25\right)^2\)
\(\left(3a^3+1\right)^2-9a^2-\left(3a^3+1\right)^2=-9a^2\)
\(F=\left(a+b\right)^3-3ab\left(a+b\right)+2ab+2+a+\frac{2a+3b}{ab}\)
\(=8-6ab+2ab+2+a+\frac{b+4}{ab}\)
\(=10-4ab+a+\frac{1}{a}+\frac{4}{ab}\)
\(F\ge10-\left(a+b\right)^2+2\sqrt{\frac{a}{a}}+\frac{4}{\frac{1}{4}\left(a+b\right)^2}=12\)
\(F_{min}=12\) khi \(a=b=1\)
\(F=a^3+b^3+ab\left(a+b\right)+2a+b+\frac{3}{a}+\frac{2}{b}\)
\(F=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)+a+b+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)
\(F=8-4ab+2+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)
Ta có: \(\left(a+b\right)^2\ge4ab\Leftrightarrow-4ab\ge-\left(a+b\right)^2=-4\)
\(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)
\(\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}=4\)
Suy ra \(F\ge8-4+2+2+4=12\)
Dấu \(=\)xảy ra khi \(a=b=1\).
Em nên gõ công thức trực quan để được hỗ trợ tốt hơn nhé
Bạn chịu khó đánh chữ bằng Latex ra nhé.