Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT \(a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a-b\right)^2\ge0\) *đúng*
Áp dụng BĐT trên vào bài toán:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+1\ge2a\end{matrix}\right.\)
Nhân theo vế 2 BĐT trên:
\(VT\ge2ab\cdot2a=4a^2b\)
Khi \(a=b=1\)
a2-b2-4a+4b
=(a-b)(a+b)-4(a-b)
=(a-b)(a+b-4)
b,
x3-3x2-3x+1
=(x+1)(x2-x+1)-3x(x+1)
=(x+1)(x2-4x+1)
c,sai đề
mình trả lời câu a,b đã mình đang bận
a, a^2-b^2-4a+4b
=(a-b)(a+b)-4(a-b)
=(a-b)(a+b-4)
b, x^3-3x^2-3x+1
=x^3 +x^2-4x^2-4x+x+1
=x(x+1)-4x(x+1)+(x+1)
=(x+1)(x-4x+1)
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)
\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)
\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác
Do đó ta có đpcm.