K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Hằng đẳng thức bậc cao

21 tháng 7 2016

a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)  Hệ thức bình phương tổng ba số

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số 

12 tháng 2 2017

a3-4a2b=2b3-5ab2

=>(a3-3a2b+3ab2-b3)-(a2b+b3-2ab2)=0

=>(a-b)3-b(a2-2ab+b2)=0

=>(a-b)2(a-2b)=0

=> a-2b=0 (vì a#b#0 bạn thiếu điều kiện nha)

=>a=2b. Thay a=2b vào bt P ta đc P=1

18 tháng 9 2018

a) \(\left(4n^2-6nm+9m^2\right)\left(2n+3m\right)\)

\(=\left(2n+3m\right)\left[\left(2n\right)^2-2n.3m+\left(3m\right)^2\right]\)

\(=\left(2n\right)^3+\left(3m\right)^3\)

\(=8n^3+27m^3\)

b) Sửa đề \(\left(7+2b\right)\left(4b^2-14b+49\right)\)

\(=\left(7+2b\right)\left[\left(2b\right)^2-2b.7+7^2\right]\)

\(=7^3+\left(2b\right)^3\)

\(=343+8b^3\)

c) \(\left(25a^2+10ab+4b^2\right)\left(5a-2b\right)\)

\(=\left(5a-2b\right)\left[\left(5a\right)^2+5a.2b+\left(2b\right)^2\right]\)

\(=\left(5a\right)^3-\left(2b\right)^3\)

\(=125a^3-8b^3\)

d) \(\left(x^2+x+2\right)\left(x^2-x-2\right)\)

\(=\left[x^2+\left(x+2\right)\right]\left[x^2-\left(x+2\right)\right]\)

\(=x^4-\left(x+2\right)^2\)

8 tháng 8 2020

a) Sửa đề :

\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)

\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)

\(x^4=\left(a+b\right)^4\)

b) Sửa đề:

 \(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)

\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)

\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)

\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)

\(x^5=\left(a+b\right)^5\)

Bạn có thể tự tóm tắt lại