Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\) Ta có:
\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)
Thay:
\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)
\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(...\)
\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)
xét dạng tổng quát đi bạn ; bạn tham khảo mấy câu hỏi tương tự ý bạn
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)
<=>\(\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)
<=>\(\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)
<=>\(\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)
vì 1/2009+1/2008-1/3-1/4=0
=>x+2010=0
=>x=-2010
Giải:
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)
\(\Leftrightarrow\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)
\(\Leftrightarrow\dfrac{x+1+2009}{2009}+\dfrac{x+2+2008}{2008}=\dfrac{x+2007+3}{3}+\dfrac{x+2006+4}{4}\)
\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)
\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}-\dfrac{x+2010}{3}-\dfrac{x+2010}{4}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)
Vì \(\Leftrightarrow\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\)
Nên \(x+2010=0\)
\(\Leftrightarrow x=-2010\)
Vậy ...