Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-1\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
\(\frac{\frac{6}{5}+\frac{6}{35}-\frac{6}{125}-\frac{6}{2009}-\frac{6}{2011}}{\frac{7}{5}+\frac{7}{35}-\frac{7}{125}-\frac{7}{2009}-\frac{7}{2011}}\)
\(=\frac{6.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}{7.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}\)
\(=\frac{6}{7}\)
Tìm x
\(a,3x(2x+1)=0\)
\(\Rightarrow\hept{\begin{cases}3x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
Vậy \(x=0\)hoặc \(x=\frac{-1}{2}\)
\(b.\frac{2}{3}-\frac{1}{3}(x-\frac{3}{2})-\frac{1}{2}(2x+1)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-x(\frac{1}{3}+1)=5\)
\(\frac{4}{3}x=\frac{2}{3}-5\)
\(\frac{4}{3}x=\frac{-13}{3}\)
\(x=\frac{-13}{3}\div\frac{4}{3}\)
\(x=\frac{-13}{4}\)
Chúc ban học tốt
Các câu hỏi này tương tự nhau
Chia hết cho 3 thì ta nhóm 2 số với nhau
\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(B=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(B=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(B=3\cdot\left(2+2^3+...+2^{59}\right)⋮3\left(đpcm\right)\)
Tương tự chia hết cho 7 nhóm 3 số, chia hết cho 15 nhóm 4 số
\(B=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+...+2^{59}.3 ⋮ 3\)
\(B=2+2^2+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+...+2^{58}.7 ⋮ 7\)
\(B=2+2^2+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+...+2^{57}.15 ⋮ 15\)
2A=2^2+2^3+......+2^2009+2^2010
2A-A=(2^2+2^3+......+2^2009+2^2010)-(2+2^2+2^3+...+2^2009)
A=2+2^2010
\(\frac{1}{3}:x-\frac{2}{3}=\frac{5}{6}+\frac{7}{8}\)
\(\frac{1}{3}:x-\frac{2}{3}=\frac{41}{24}\)
\(\frac{1}{3}:x=\frac{19}{8}\)
\(x=\frac{8}{57}\)
\(\frac{2}{5}-x:\frac{3}{5}=\frac{6}{7}\)
\(x:\frac{3}{5}=\frac{-16}{35}\)
\(x=\frac{-48}{175}\)
\(\frac{4}{5}-\frac{26}{m}=\frac{-8}{15}\)
\(\frac{26}{m}=\frac{4}{3}\)
=> 26 x 3 = m x 4
78 = m x 4
m = 19,5
Câu 1 :\(\frac{1}{3}\div x-\frac{2}{3}=\frac{5}{6}+\frac{7}{8}\)
\(\Leftrightarrow\frac{1}{3x}=\frac{5}{6}+\frac{7}{8}+\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{3x}=\frac{4\cdot5}{24}+\frac{7\cdot3}{24}+\frac{2\cdot8}{24}\)
\(\Leftrightarrow\frac{1}{3x}=\frac{20}{24}+\frac{21}{24}+\frac{16}{24}\)
\(\Leftrightarrow\frac{1}{3x}=\frac{57}{24}\)
\(\Leftrightarrow24=57\cdot3x\)
\(\Leftrightarrow24=171x\)
\(\Leftrightarrow x=\frac{24}{171}=\frac{8}{57}\)
Câu 2: \(\frac{2}{5}-x\div\frac{3}{5}=\frac{6}{7}\)
\(\Leftrightarrow\frac{-5x}{3}=\frac{6}{7}-\frac{2}{5}\)
\(\Leftrightarrow\frac{-5x}{3}=\frac{5\cdot6}{35}-\frac{2\cdot7}{35}\)
\(\Leftrightarrow\frac{-5x}{3}=\frac{30}{35}-\frac{14}{35}\)
\(\Leftrightarrow-\frac{5x}{3}=\frac{16}{35}\)
\(\Leftrightarrow-175x=48\)
\(\Leftrightarrow x=-\frac{48}{175}\)
Câu 3: \(\frac{4}{5}-\frac{26}{m}=-\frac{8}{15}\)
\(\Leftrightarrow\frac{26}{m}=\frac{4}{5}-\left(-\frac{8}{15}\right)\)
\(\Leftrightarrow\frac{26}{m}=\frac{4}{5}+\frac{8}{15}\)
\(\Leftrightarrow\frac{26}{m}=\frac{12}{15}+\frac{8}{15}\)
\(\Leftrightarrow\frac{26}{m}=\frac{20}{15}\)
\(\Leftrightarrow20m=26\cdot15=390\)
\(\Leftrightarrow m=\frac{390}{20}=\frac{39}{2}\)
\(A=2+2^3+...+2^{2009}\)
\(2^2.A=2^3+2^5+...+2^{2011}\)
\(4A-A=\left(2^3+2^5+...+2^{2011}\right)-\left(2+2^3+...+2^{2009}\right)\)
\(3A=2^{2011}-2\)
\(\Rightarrow A=\frac{2^{2011}-2}{3}\)