Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{2006}{1.2}+\dfrac{2006}{2.3}+...+\dfrac{2006}{2006.2007}\)
\(N.2006=\dfrac{2006}{1}-\dfrac{2006}{2}+\dfrac{2006}{2}-\dfrac{2006}{3}+...+\dfrac{2006}{2006}-\dfrac{2006}{2007}\)
\(N.2006=2006-\dfrac{2006}{2007}\)
\(N=2006-\dfrac{2006}{2007}:2006\)
\(N=2006-\dfrac{1}{2007}\)
\(\frac{2006}{1.2}+\frac{2006}{2.3}+...+\frac{2006}{2006.2007}\)
\(=2006.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\right)\)
\(=2006.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=2006.\left(1-\frac{1}{2007}\right)\)
\(=2006.\frac{2006}{2007}\)
\(=\frac{2006^2}{2007}\)
\(=\frac{2006}{1.2}+\frac{2006}{2.3}+...+\frac{2006}{2006.2007}\)
\(=2006 \left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\right)\)
\(=2006.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=2006.\left(1-\frac{1}{2007}\right)\)
\(=2006.\frac{2006}{2007}=\frac{4024036}{2007}\)
A = 2006.2007+2008
A = (2008 - 2).2007 + 2008
A = 2008.2007 - 2.2007 + 2008
A = 2008.2007 - 4014 + 2008
A = 2008.2007 - 2006 = B
Vậy A = B
A=2006^2005+1/2006^2006+1
B=2006^2006+1/2006^2007+1
Có : 2006A = 2006^2006+2006/2006^2006+1
= 1 + 2005/2006^2006+1 2006B
= 2006^2007+2006/2006^2007+1
= 1 + 2005/2006^2007+1
Vì : 2006^2006 < 2006^2007
=> 2006^2006+1 < 2006^2007+1
=> 2005/2006^2006+1 > 2005/2006^2007+1
=> 2016A > 2016B
=> A>B
Ta có:
\(A=\frac{2006^{2005}+1}{2006^{2006}+1}\)
\(\Rightarrow2006A=\frac{2006^{2006}+2006}{2006^{2006}+1}=\frac{\left(2006^{2006}+1\right)+2005}{2006^{2006}+1}=1+\frac{2005}{2006^{2006}+1}\)
Ta lại có:
\(B=\frac{2006^{2006}+1}{2006^{2007}+1}\)
\(\Rightarrow2006B=\frac{2006^{2007}+2006}{2006^{2007}+1}=\frac{\left(2006^{2007}+1\right)+2005}{2006^{2007}+1}=1+\frac{2005}{2006^{2007+1}}\)
Ta thấy:
\(\frac{2005}{2006^{2006}+1}>\frac{2005}{2006^{2007}+1}\Rightarrow2006A>2006B\Rightarrow A>B\)
Vậy A>B.
Ai k mình, mình k lại.
\(A=\frac{2006^{2006}+1}{2006^{2007}+1}\) VÀ \(B=\frac{2006^{2005}+1}{2006^{2006}+1}\)
Ta có: \(A=\frac{2006^{2006}+1}{2006^{2007}+1}< 1\)
Nên \(A=\frac{2006^{2006}+1}{2006^{2007}+1}< \frac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\frac{2006^{2006}+2006}{2006^{2007}+2006}\)
\(=\frac{2006.\left(2006^{2005}+1\right)}{2006.\left(2006^{2006}+1\right)}\)
\(=\frac{2006^{2005}+1}{2006^{2006+1}}=B\)
Vậy \(A< B\)
Đặt \(A=\frac{2006}{1\cdot2}+\frac{2006}{2\cdot3}+...+\frac{2006}{2006\cdot2007}\)
\(2006A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2006\cdot2007}\)
\(2006A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(2006A=\frac{1}{1}-\frac{1}{2007}\)
\(2006A=\frac{2006}{2007}\)
\(A=\frac{2006}{2007}\div2006\)
\(A=\frac{1}{2007}\)
Vậy giá trị của biểu thức bằng 1/2007
* Không chắc nha *
Sửa đề : \(A=\frac{2006}{1.2}+\frac{2006}{2.3}+...+\frac{2006}{2006.2007}\)
\(2006A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)
\(2006A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(2006A=1-\frac{1}{2007}\)
\(2006A=\frac{2006}{2007}\)
\(A=\frac{2006}{2007}:2006=\frac{2006}{2007}.\frac{1}{2006}=\frac{1}{2007}\)