Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có (x^2-3x+4)(cx^2+dx+e)
=cx^4+dx^3+ex^2-3cx^3-3dx^2-3ex+4cx^2+4dx+4e
=cx^4+(d-3c)x^3+(e-3d+4c)x^2+(-3e+4d)x+4e
đồng nhất với đa thức A(x) ta có c=1 d-3c=0 e-3d+4c=-3 -3e+4d=a 4e=b
d-3c=0 thế c=1 ta có d-3.1=0 suy ra d=3
e-3d+4c=-3 thế c=1,d=3 ta có e-3.3+4.1=-3 suy ra e=2
-3e+4d=a thế e=2,d=3 ta có a=6
4e=b thế e=2 suy ra b=8
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này ko kẻ hình cũng được.
a) Tứ giác ABCD có:
A^ +B^ + C^ + D^ = 360o
2A^ = 360o - B^ - C^
2A^ = 360o - 130o - 50o
2A^= 180o
A^ = 90o
D^ = A^ = 90o
b) Tam giác vuông ADC có:
AD2 + DC2 = AC2
Tam giác vuông DAB có:
AD2 + AB2= BD2
Cộng vế với vế ta được:
AD2+ DC2 + AD2 + AB2 = AC2 + BD2
AB2 + DC2 + 2AD2 = AC2 + BD2 (đpcm)
câu dưới cùng của đề bài........make color!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)
\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)
b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)
\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)
c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)
d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
=> ĐPCM
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)^2+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-\left(3a^2b+3abc+3ab^2\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
=> ĐPCM
P/s: Có sao sót xin bỏ qua
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2\cdot c+3\left(a+b\right)c^2+c^3\)\(-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3a^2b+3ab^2+3\left(a^2+2ab+b^2\right)c\)\(+3ac^2+3bc^2-a^3-b^3-c^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=\left(3abc+3a^2c+3b^2c+3bc^2\right)\)\(+\left(3a^2b+3a^2c+3ab^2+3abc\right)\)
\(=c\left(3ab+3ac+3b^2+3bc\right)\)\(+a\left(3ab+3ac+3b^2+3bc\right)\)
\(=\left(a+c\right)\left[\left(3ab+3b^2\right)+\left(3ac+3bc\right)\right]\)
\(=\left(a+c\right)\left[3b\left(a+b\right)+3c\left(a+b\right)\right]\)
\(=3\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)( do \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\))
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ab-ac\right)\)\(-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
Dung . vi ap dung dung hang dang thuc
neu bn muon de hieu thi lam nhu the nay :
a^2 - ( -b^2 ) = ( a - ( -b ) ) ( a + ( -b ) )
=> a^2 + b^2 = ( a + b )( a - b )
ủa, a2 - b2 = (a+b)(a-b) mà bn