K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

a, \(A=\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right)\left(\frac{2}{x-1}\right)\)ĐK : \(x\ne1;\pm2\)

\(=\left(\frac{x+2+2x+x-2}{x^2-4}\right)\left(\frac{2}{x-1}\right)=\frac{4x}{x^2-4}.\frac{2}{x-1}=\frac{8x}{\left(x-1\right)\left(x-2\right)\left(x+2\right)}\)

b, bạn check lại đề bài nhé 

19 tháng 5 2021

A=(1x−2 +2xx2−4 +1x+2 )(2x−1 )ĐK : x≠1;±2

=(x+2+2x+x−2x2−4 )(2x−1 )=4xx2−4 .2x−1 =8x(x−1)(x−2)(x+2) 

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

a, \(A=\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-1\right)\) \(\left(ĐK:x\ne\pm2\right)\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

\(A=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)

\(A=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{-\left(x-2\right)}{x}\)

\(A=\frac{-4x.\left(x-2\right)}{\left(x-2\right)\left(x+2\right).x}\)

\(A=\frac{-4}{x+2}\)

b, \(A=\frac{-4}{x+2}=1\)

\(\rightarrow\frac{-4}{x+2}=\frac{x+2}{x+2}\)

\(\rightarrow-4=x+2\)

\(\rightarrow-6=x\)

19 tháng 5 2021

a) ĐKXĐ của A là x\(\ne\pm2\); x\(\ne1\)

Ta có 

    A= \((\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2})\cdot\frac{2}{x-1}\)

    A=\(\frac{x+2+2x+x-2}{\left(x-2\right)\cdot\left(x+2\right)}\cdot\frac{2}{x-1}\)

    A=\(\frac{6x}{\left(x-1\right)\left(x-2\right)\left(x+2\right)}\)

18 tháng 10 2018

a) -4x2+2x

b) -4x2+2x=0

x(-4x+2)=0

=> x=0 hoặc -4x+2=0

                     -4x = -2

                        x=1/2(đpcm)

c) Thay x=-1/4 vào -4x2+2x ta có : -4 (-1/4)2 +2(-1/4) = ... (tự tính )

9 tháng 7 2020

a) A = (x - 3)(x + 1) - (2x - 1)^2 - (x + 2)(x - 2)

A = x^2 - 2x - 3 - 4x^2 + 4x - 1 - x^2 + 4

A = -4x^2 + 2x

b) 4x^2 - 2x = 0

<=> 2x(2x - 1) = 0

<=> 2x = 0 hoặc 2x - 1 = 0

<=> x = 0 hoặc x = 1/2

c) với x = -1/4, ta có:

4(-1/4)^2 - 2(-1/4) = 3/4

11 tháng 10 2018

a) \(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(A=4x^2+4x+1-x^2+4-2x^2-2x\)

\(A=x^2+2x+5\)

b) Để A = 4

=> \(x^2+2x+5=4\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

c) Ta có A = x2 + 2x + 5

A = ( x + 1 )2 + 4

=> \(A\ge4>0\left(đpcm\right)\)

11 tháng 10 2018

a,\(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(=4x^2+4x+1-x^2+4-2x^2-2x\)

\(=x^2+2x+5\)

b,\(A=x^2+2x+5=4\)

\(\Rightarrow x^2+2x+5-4=0\)

\(x^2+2x+1=0\)

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

c, Ta có: \(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4>0\)

Hay: A > 0 => đpcm

=.= hok tốt!!

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`