Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
\(P=a+1-\frac{b^2(a+1)}{b^2+1}+b+1-\frac{c^2(b+1)}{c^2+1}+c+1-\frac{a^2(c+1)}{a^2+1}\)
\(=(a+b+c+3)-\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)\)
Áp dụng BĐT AM-GM:
\(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}=\frac{ab+bc+ac+a+b+c}{2}\)
\(\Rightarrow P\geq \frac{a+b+c+6}{2}-\frac{ab+bc+ac}{2}\)
Mà: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}\Rightarrow P\geq \frac{a+b+c+6}{2}-\frac{(a+b+c)^2}{6}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
@Trần Minh Lộc: lần sau bạn lưu ý gõ đề bài bằng công thức toán.
a;b;c phải là số dương chứ bạn?
\(\dfrac{a+1}{b^2+1}=a+1-\dfrac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\dfrac{b^2\left(a+1\right)}{2b}=a+1-\dfrac{b+ab}{2}\)
Tương tự:
\(\dfrac{b+1}{c^2+1}\ge b+1-\dfrac{c+bc}{2}\) ; \(\dfrac{c+1}{a^2+1}\ge c+1-\dfrac{a+ca}{2}\)
Cộng vế với vế:
\(VT\ge a+b+c+3-\dfrac{1}{2}\left(a+b+c+ab+bc+ca\right)\)
\(VT\ge6-\dfrac{3}{2}-\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{9}{2}-\dfrac{1}{6}\left(a+b+c\right)^2=3=a+b+c\)
\(\Rightarrow VT\ge a+b+c\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
a(1/b+1/c) + b(1/c+1/a) + c(1/b+1/a) = -2, a^3 + b^3 + c^3 = 1
.CMR 1/a + 1/b + 1/c = 1
#