Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
1.
a)=1/3-[(-5/4)-5/8]
=1/3-(-15/8)=53/24
b)=5/9:(-3/22)+5/9:(-3/5)
=5/9*22/-3+5/9*5/-3=-110/27+-25/27=5
2
a)Ta có 339<340=920<1120<1121
nên 339<1121
b)Ta có /3,4-x/ lớn hơn hoặc bằng 0 Với mọi x thuộc R
=> -/3,4-x/ bé hơn hoặc bằng 0 Với mọi x thuộc R
=> 0,5-/3,4-x/ bé hơn hoặc bằng 0,5 Với mọi x thuộc R
Dấu = xảy ra khi 3,4-x=0
=>x=3,4
Vậy GTLN của A = 0,5 khi x=3,4
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}<\frac{1}{11^{21}}\) Vì 2733 > 1133 > 1121
\(A=\left(\frac{1}{5}\right)^1+\left(\frac{1}{5}\right)^{^2}+...+\left(\frac{1}{5}\right)^{2015}\)
\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)
\(5A=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
\(\Rightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{2015}}\)
\(\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}\)
Vì \(1-\frac{1}{5^{2015}}<1\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}<\frac{1}{4}\)
\(x+x+\frac{1}{5}+x+\frac{2}{5}+x+\frac{3}{5}+x+\frac{4}{5}=5x+\frac{10}{5}\)
\(5x+2>5x\)
\(A>B\)
\(x+x+\frac{1}{5}+x+\frac{2}{5}+x+\frac{3}{5}+x+\frac{5}{5}=5x+\frac{10}{5}\)
\(5x+2>5x\)
\(A>B\)
\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+........+\frac{1}{5^{49}}\)
\(\Rightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+.......+\frac{1}{5^{48}}\)
\(\Rightarrow5A-A=4A=1-\frac{1}{5^{49}}\)
\(\Rightarrow A=\frac{1-\frac{1}{5^{49}}}{4}< \frac{1}{4}\)