K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+........+\frac{1}{5^{49}}\)

\(\Rightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+.......+\frac{1}{5^{48}}\)

\(\Rightarrow5A-A=4A=1-\frac{1}{5^{49}}\)

\(\Rightarrow A=\frac{1-\frac{1}{5^{49}}}{4}< \frac{1}{4}\)

2 tháng 10 2018

\(5^{200}=\left(5^2\right)^{100}=25^{100}\)

\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)

\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)

\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)

P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r

4 tháng 11 2018

1. 

a)=1/3-[(-5/4)-5/8]

=1/3-(-15/8)=53/24

b)=5/9:(-3/22)+5/9:(-3/5)

=5/9*22/-3+5/9*5/-3=-110/27+-25/27=5

2

a)Ta có 339<340=920<1120<1121

 nên 339<1121

b)Ta có /3,4-x/ lớn hơn hoặc bằng 0 Với mọi x thuộc R

          => -/3,4-x/ bé hơn hoặc bằng 0 Với mọi x thuộc R

           => 0,5-/3,4-x/ bé hơn hoặc bằng 0,5 Với mọi x thuộc R

  Dấu = xảy ra khi 3,4-x=0

                        =>x=3,4

 Vậy GTLN của A = 0,5 khi x=3,4

28 tháng 6 2015

a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)

=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)

b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)

=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc  \(\frac{1}{2}x-1=-\frac{1}{2}\)

=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1

c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)

=> x - 1= 2 => x = 3

d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)

=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)

2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)\(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)

Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)

b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}<\frac{1}{11^{21}}\) Vì 2733 > 1133 > 1121

28 tháng 6 2015

nhjeu wa bạn giải 1 mjk luôn đi

29 tháng 10 2015

\(A=\left(\frac{1}{5}\right)^1+\left(\frac{1}{5}\right)^{^2}+...+\left(\frac{1}{5}\right)^{2015}\)

\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)

\(5A=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)

\(\Rightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)

\(\Rightarrow4A=1-\frac{1}{5^{2015}}\)

\(\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}\)

Vì \(1-\frac{1}{5^{2015}}<1\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}<\frac{1}{4}\)

13 tháng 7 2017

\(x+x+\frac{1}{5}+x+\frac{2}{5}+x+\frac{3}{5}+x+\frac{4}{5}=5x+\frac{10}{5}\)

\(5x+2>5x\)

\(A>B\)

13 tháng 7 2017

\(x+x+\frac{1}{5}+x+\frac{2}{5}+x+\frac{3}{5}+x+\frac{5}{5}=5x+\frac{10}{5}\)

\(5x+2>5x\)

\(A>B\)