K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

A.nhân 2 lên

B.câu A nhân 2

14 tháng 4 2019

bạn có hiểu ko

18 tháng 4 2018

Bài 1 : 

Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\) ta có : 

\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(A=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

Chúc bạn học tốt ~ 

9 tháng 8 2018

99/200

9 tháng 8 2018

\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+....+\frac{1}{98\cdot100}\)

\(=\frac{1}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+.......+\frac{2}{98\cdot100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{200}\)

Ta có: \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{48\cdot50}\)

\(\Rightarrow2\cdot A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{48\cdot50}\)

\(\Rightarrow2\cdot A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{48}-\frac{1}{50}\)

\(\Rightarrow2\cdot A=\frac{1}{2}-\frac{1}{50}=\frac{12}{25}\)

\(\Rightarrow2\cdot A=\frac{12}{25}\)

hay \(A=\frac{12}{25}:2=\frac{12}{25}\cdot\frac{1}{2}=\frac{12}{50}=\frac{6}{25}\)

8 tháng 3 2020

\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

8 tháng 3 2020

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)

A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)

26 tháng 4 2016

1)\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

2)\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(=2\times\frac{502}{1005}\)

\(=\frac{1004}{1005}\)

tự làm tiếp nhé

26 tháng 4 2016

1.= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

   = \(1-\frac{1}{101}\) = \(\frac{100}{101}\)

2.= \(2\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)

   = \(2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

   = \(2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\) = \(2\cdot\frac{502}{1005}\) = \(\frac{1004}{1005}\)

15 tháng 12 2016

A=1/2.4+1/4.6+........+1/100.102

A=1/2-1/4+1/4-1/6+.......+1/100-1/102

A=1/2-1/102

A=51/102-1/102

A=50/102

A=25/51

22 tháng 3 2016

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{18}-\frac{1}{20}\)

\(A=\frac{1}{2}-\frac{1}{20}\)

\(A=\frac{10}{20}-\frac{1}{20}\)

\(A=\frac{9}{20}\)

16 tháng 5 2017

\(\frac{1}{2.4}+\frac{1}{4.6}+....+\frac{1}{2016.2018}\)

\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2016.2018}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2018}\right)=\frac{1}{2}.\frac{504}{1009}=\frac{252}{1009}\)

16 tháng 5 2017

mơn bn nha