Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + ..... + 2002.2003
3.M = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + 5.6.3 + ..... + 2002.2003.3
3.M = 1.2.3 + 2.3. ( 4 - 1 ) + 3.4. ( 5 - 2 ) + 4.5. ( 6 - 3 ) + 5.6. ( 7 - 4 ) + ......... + 2002.2003. ( 2004 - 2001 )
3.M = 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + 5.6.7 - 4.5.6 + ...... + 2002.2003.2004 - 2001.2002.2003
3.M = 2002.2003.2004
Vậy M = 2002.2003.2004 : 3
M = 2678684008
Dùng công thức \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\) là ra nha bạn
Tức \(\frac{2002.2003.2004}{3}=2678684008\)
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
A= 1.2+2.3+3.4+...+99.100
3A= 1.2.3+2.3.4+3.4.3+...+99.100.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+ 99.100(101-98)
3A= (1.2.3+2.3.4+3.4.5+...+ 99.100.110)-(0.1.2+1.2.3+2.3.4+3.4.5+...+98.99.100)
3A= 99.100.101- 0.1.2
3A= 999 900-0
3A= 999 900
A= 999 900:3
A= 333 300
GOOD LUCK !!!! ^ ^
A = 1.2 + 2.3 + 3.4 + ... + 2005.2006
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2005.2006.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2005.2006.(2007 - 2004)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2005.2006.2007 - 2004.2005.2006
3A = 2005.2006.2007
A = 2690738070
Có A=1.2+2.3+3.4+...+2005.2006
3A=1.2.3+2.3.3+3.4.3+....+2005.2006.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+....+2005.2006.(2007-2004)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+2005.2006.2007-2004.2005.2006
3A=2005.2006.2007
A=(2005.2006.2007):3
Vậy A=....
\(3A=1.2.3+2.3.\left(4-1\right)+...+100.101.\left(102-99\right)\)
\(3A=1.2.3+2.3.4-1.2.3+.......+100.101.102-99.100.101\)
\(3A=100.101.102\)
\(A=\frac{100.101.102}{3}\)
\(A=343400\)
3=1.2.3+2.3(4-1)+...+100.101(102-99)
3=1.2.3+2.3.4-1.2.3+.....+100.101.102-99.100.101
3=100.101.101
=100.101.102/3
=343400
mn ủng hộ ^--^
3A=1.2.3+2.3.3+...+n(n+1).3
3A=1.2(3-0)+2.3(4-1)+...+n(n+1)[(n+2)-(n-1)]
3A=(1.2.3-0.1.2)+(2.3.4-1.2.3)+...+[n(n+1)(n+2)-(n-1)n(n+1)]
3A=n(n+1)(n+2)
A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
A=1/1.2+1/2.3+1/3.4+..+1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
A=1.2+2.3+3.4+4.5+...+99.100
=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101
=99.100.101=999900
=>A=999900:3=333300
Vậy A=333300
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +.....+ 98.99
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... +98.99.(100 - 97)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 98.99.100
=> 3A = 98.99.100
=> A = 98.99.100 / 3
=> A = 323400