K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

2A=2+2^2+...+2^2014

2A-A

=>A=2^2015-1

Mà:2^11.2^2004-1=2048.2^2004-1

=>A>2016

16 tháng 11 2020

nani?

10 tháng 5 2016

A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)

2 tháng 7 2017

Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\) 

           B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)

Nên A > B 

2 tháng 7 2017

Viết hẳn từng bước đi bạn

9 tháng 5 2017

2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016

Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016

=> 2A=1/1.2-1/2015.2016

=> 2A < 1/2 => A < 1/4

31 tháng 8 2017

nbvbvvvxcvcgf

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

15 tháng 4 2016

A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)

\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)

\(Vậy:A>B\)

Đúng nha Nguyễn Bình Minh

5 tháng 6 2016

so sánh:

\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)  và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)

                                                             \(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)

Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)

          \(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)

          \(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)

Vậy: \(A>B\)

11 tháng 2 2017

\(\frac{A}{2}=\frac{2^{2015}+1}{2\left(2^{2014}+1\right)}=\frac{2^{2015}+1}{2^{2015}+2}=\frac{2^{2015}+2-1}{2^{2015}+2}=1-\frac{1}{2^{2015}+2}\)

\(\frac{A}{2}=\frac{2^{2016}+1}{2\left(2^{2015}+1\right)}=\frac{2^{2016}+1}{2^{2016}+2}=\frac{2^{2016}+2-1}{2^{2016}+2}=1-\frac{1}{2^{2016}+}\)

Vì \(1-\frac{1}{2^{2015}+2}< 1-\frac{1}{2^{2016}+2}\Rightarrow\frac{A}{2}< \frac{B}{2}\)

\(\Rightarrow A< B\)