Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=-113\\ b,=-2088\\ c,=1689\\ d,=-226\\ e,=-9\\ f,=-3\\ h,=18\\ i,=-13\)
C=5+5^2+5^3+.....+5^2021
C=(5++5^2+5^3)+(5^4+5^5+5^60+...+(5^2019+5^2020+5^2021)
C=5.(1+5+5^2)+5^4.(1+5+5^2)+...+5^2019.(1+5+5^2)
C=5.31+5^4.31+...+5^2019.31
C=(5+5^4+...+5^2019).31 chia hết cho 31
vậy C chia hết cho 31
\(E=\left(1^2+2^2+...+2021^2\right)\left(93-93\right)=0\)
B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)
a: =(-1)+(-1)+...+(-1)=-1011
b: =(-5)+(-5)+...+(-5)=-175
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
A = (1² + 2² + 3³ + ... + 2021² ) . (3 × 31 - 279 : 3 )
A = (1² + 2² + 3³ + ... + 2021² ) . ( 93 - 93 )
A = (1² + 2² + 3³ + ... + 2021² ) . 0
A = 0