K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6

Lời giải:

$A=1+2+2^2+2^3+...+2^{2014}+2^{2015}$

$2A=2+2^2+2^3+2^4+...+2^{2015}+2^{2016}$

$\Rightarrow 2A-A=(2+2^2+2^3+2^4+...+2^{2015}+2^{2016})-(1+2+2^2+2^3+...+2^{2014}+2^{2015})$

$\Rightarrow A=2^{2016}-1$

 

11 tháng 12 2017

Bạn viết đề bài chưa hính xác

\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)

\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)

\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2014}\right)\)

\(A=2.2014.\frac{2013}{2014}\)

\(A=\frac{2.2014.2013}{2014}\)

\(A=2.2013\)

\(A=4026\)

4 tháng 1 2017

A=4026

20 tháng 12 2018

ai biet giup

27 tháng 12 2017

A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015

2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016 

2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 ) 

2013A = 2014^2016 - 1 

A = 2014^2016 - 1 / 2013

B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )

3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 

3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )

2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100 

2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3 

2B = 9 - 27 + 3^101 - 3 + 9 - 27

2B = -18 + 3^101 - 3 + ( -18 )

2B = -39 + 3^101

B = -39 + 3^101 / 2 

27 tháng 12 2017

A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015

2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016

2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )

2013A = 20142016 - 1

\(=\frac{2014^{2016}-1}{2013}\)