Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)
vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)
\(B=\frac{2^{2020}+2}{2^{2021}+2}\)
\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)
\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A=B\)
P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo
\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A>B\)
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
\(2^n-A=1\)
\(\Leftrightarrow A=2^n-1\)
Suy ra \(n=2021\)
Chọn b.
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
ta có
\(C=2020\times\left(2021^9+2021^8+...+2021^2+2021^1+1\right)+1\)
\(2020\times\frac{2021^{10}-1}{2021-1}+1=2021^{10}-1+1=2021^{10}\)
A = 1 + 2 + 22 + ... + 22021
2A = 2 + 4 + 23 + ... 22022
A = 22022 - 1
\(A=1+2+2^2+...+2^{2020}+2^{2021}\)
\(2A=2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+...+2^{2020}+2^{2021}\right)\)
\(A=2^{2022}-1\)