K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

  \(A=1+2^1+2^2+......+2^{2006}\)

\(2A=2.\left(1+2^1+2^2+......+2^{2006}\right)\)

\(2A=2+2^2+2^3+........+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+....+2^{2007}\right)-\left(1+2+2^2+...+2^{2006}\right)\)

\(A=2^{2007}-1\)

\(B=1+3+3^2+.....+3^{100}\)

\(3B=3.\left(1+3+3^2+......+3^{100}\right)\)

\(3B=3+3^2+3^3+.....+3^{101}\)

\(3B-B=\left(3+3^2+3^3+....+3^{101}\right)-\left(1+3+3^2+....+3^{100}\right)\)

\(B=3^{101}-1\)

Các phần còn lại bạn làm tương tự như trên nha

21 tháng 3 2021

B=1+3+3^2+3^3+..+3^100

=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101

=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)

=> 2B = 3^101 - 1

=> B =( 3^101 - 1) / 2

21 tháng 6 2019

1,

a) 1^3 + 2^3 + ... + 10^3 = ( x+1) ^2

   ( 1+2+3+4+5+...+10 ) ^ 2 = ( x+1) ^2 

   \(\left(\frac{10\times11}{2}\right)^2\)= ( x + 1 ) ^2

     55^2 = ( x+1 ) ^2 

    => x+1= 55 hoặc x + 1 = -55

         x = 54            x = -56

      Vậy : x = 54 hoặc x = -56

b,   1+3+5+...+99 = ( x-2 )^2

     Đặt 1+3+5+...+99 là : A

     => Số các số hạng của A là : ( 99-1 ) : 2 + 1 = 50

     => A = ( 1+99 ) x 50 :2

          A = 2500

    Ta có : 2500 = ( x-2)^2

   => (x-2)^2 = 50^2 hoặc (x-2)^2 = (-50)^2

   =>  x-2=50                   x - 2 = -50

         x = 52                    x = -48

Vậy : x = 52 hoặc x = -48

2, 

 a)A = 2^0 + 2^1 + 2^2 + ...+2^2006

    2A = 2^1 + 2^2 + ... + 2^2007

    2A - A = ( 2^1 + 2^2 + ... + 2^2007 ) - ( 2^0 + 2^1 + ... + 2^2006 )

     A = 2^2007 - 2^0

    A = 2^2007 - 1 

Phần b Nhân với 3 làm tương tự

Phần c nhân với 4 lm tương tự

Phần d nhân với 5 làm tương tự

< Chúc bn hok tốt > nhớ k cho mik nhé

21 tháng 6 2019

b1:

a)=3(1+2+3+4+5+6+7+8+9+10)

=3.55

=165

b)ta xét vế 1:

số các số hạng ở vế 1 là :(99-1):2+1=50 số

tổng số các số hạng ở vế 1 là:(1+99).(50:2)=250

ta có:(x-2).2=250

x-2=250:2

x-2=125

x=127

b2:

A=2(0+1+2+...+2006)

A=2 {[(2006+1):2].(2006+0)}

A=2(1004+(1003.2006))

A=4014044

B=3(1+2+3+...+100)

B=3((100:2).(100+1))

B=3.5050

B=15150

C=4(1+2+...+n)

C=4k(chứ ts đây mik chịu,thông cảm bn nhé!)

D=5(1+2+...+2000)

D=5((2000:2).(2000+1))

D=10005000

24 tháng 6 2016

A = 20 + 21 + 22 + ... + 22006

2A = 2 + 22 + 23 +...+ 22006 + 22007

2A - A = ( 2 + 22 + 23 + ... + 22006 + 22007 ) - ( 20 + 21 + 22 +...+ 22006 )

A = 22007 - 1

24 tháng 6 2016

câu b câu d cũng tương tự câu a bạn nhé

 

20 tháng 9 2015

A = 22007 - 2 

B = 3101 - 3

C = 4N - 42 

D = 52000 - 1 

chắc là z ~~~~~~~~ 

1 tháng 3 2020

Mời bạn tham khảo các link sau: 

a),b),c):https://hoidap247.com/cau-hoi/214111

d):https://olm.vn/hoi-dap/detail/78449788871.html

giúp mik với

25 tháng 9 2019

đề câu e sai r

25 tháng 9 2019

a) 1+2+3+4+5+...+n = n(n+1) / 2

b)2+4+6+...+2n = [(2n-2):2+1] . (2n+2)/2 = n . ( 2n+2) /2

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)