Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(+)\frac{1}{301}>\frac{1}{300}\)
\(+)\frac{1}{302}< \frac{1}{300}\)
..................................
\(+)\frac{1}{400}< \frac{1}{300}\)
Suy ra \(\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}< \frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}=\frac{1}{300}.100=\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}< \frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6}< 1\)
hay \(A< 1\)
Vậy \(A< 1\)
Ta có : A = \(\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+.....+\frac{1}{\frac{n\left(n+1\right)}{2}}\)
=\(\frac{2}{3\cdot3}+\frac{2}{3\cdot4}+.....+\frac{2}{n\left(n+1\right)}=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{n\left(n+1\right)}\right)=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=1-\frac{2}{n+1}\)
=> A < 1 =>A<2 với mọi n
Câu sau mình không hiểu đề
a: \(3x-\left|2x+1\right|=2\)
\(\Leftrightarrow\left|2x+1\right|=3x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2-\left(2x+1\right)^2=0\\x>=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2-2x-1\right)\left(3x-2+2x+1\right)=0\\x>=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(5x-1\right)=0\\x>=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow x=3\)
e: Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Bài 1 :
a ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow\left(x-1\right)^2+5\ge5\) \(\forall\) \(x\) (đpcm)
b ) Vì \(\left(x-5\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x-5\right)^2+3\ge3\) \(\forall\) \(x\)
Dấu "=" xảy ra khi \(\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy GTNN của A là 3 <=> x = 5
Bài 2 :
a ) \(A=x^2-2x+2=x^2-x-x+1+1=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)\left(x-1\right)+1=\left(x-1\right)^2+1=B\) (đpcm)
b ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x-1\right)^2+1\ge1\) \(\forall\) \(x\) (Đpcm)
\(\frac{1}{2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)\)
\(\frac{1}{3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(\frac{1}{4^2}< \frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{1}{5^2}< \frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right)\)
....
\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)
công hết lại: ra điều cần chứng minh
cho @ ...thêm cái nữa
\(\frac{1}{n^2}< \frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n-2}\right)\)