Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{8}\right)+.......................+\left(1-\dfrac{1}{1024}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+..................+\dfrac{1023}{1024}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{3}{2^2}+\dfrac{7}{2^3}+...............+\dfrac{1023}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{3}{2}+\dfrac{7}{2^2}+...............+\dfrac{1023}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{3}{2}+\dfrac{7}{2^2}+............+\dfrac{1023}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{3}{2^2}+\dfrac{7}{2^3}+...............+\dfrac{1023}{2^{10}}\right)\)\(\Leftrightarrow A=1+\left(\dfrac{3}{2}-\dfrac{1}{2}\right)+\left(\dfrac{7}{2^2}-\dfrac{3}{2^2}\right)+.................+\left(\dfrac{1023}{2^9}-\dfrac{511}{2^9}\right)-\dfrac{1023}{2^{10}}\)\(\Leftrightarrow A=\left(1+1+...+1\right)-\dfrac{1023}{2^{10}}\)
\(\Leftrightarrow A=9-\dfrac{1023}{2^{10}}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{1024}\)
\(2A=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{512}\)
\(2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{512}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{1024}\right)\)
\(A=2-\dfrac{1}{1024}\)
\(A=\dfrac{2047}{1024}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\\ =1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\\ \Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\\ \Rightarrow A-\dfrac{1}{2}A=1-\dfrac{1}{2^{11}}\\ \Rightarrow A=2-\dfrac{1}{2^{10}}\)
a) \(A=1.2+2.3+3.4+...+98.97\)
\(\Rightarrow A=1.2+2.3+3.4+...+97.98\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+97.98.3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+97.98.\left(99-96\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+97.98.99-96.97.98\)
\(\Rightarrow3A=97.98.99\)
\(\Rightarrow A=97.98.33\)