K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

ta có:1/2^2=1/4
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
...
1/100^2<1/99.100=1/99-1/100
=> A=1/2^2+1/3^2+1/4^2+.....+1/100^2<1/4+1/2-1/3+1/3-1/4+...+1/99-1/100
<1/4+1/2-1/100<1/2

24 tháng 4 2019

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}\)

\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)

\(< \frac{1}{2}-\frac{1}{100}\)

\(< \frac{1}{2}\)

18 tháng 5 2017

Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....................+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+................+\dfrac{1}{99.100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)

\(\Rightarrow A< 1\) \(\rightarrowđpcm\)

18 tháng 5 2017

Ta có

\(\dfrac{1}{2^2}< \dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(.........\)

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Cộng theo vế ta có:

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\)

Vậy \(A< 1\left(dpcm\right)\)

5 tháng 5 2017

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{11}\)

\(=\frac{65}{132}\)

vậy \(A>\frac{65}{132}\)

8 tháng 5 2019

Ta có

A=122 +132 +142 +...+192 +1102 

A>122 +13.4 +14.5 +...+19.10 +110.11 

=122 +13 14 +14 15 +...+19 110 +110 111 

=122 +13 111 

=65132 

vậy A>65132  

K CHO MK NHA 

25 tháng 5 2016

A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

A <\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

A<\(1-\frac{1}{n}\)=\(\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}< 1\)

Vậy A < 1

25 tháng 5 2016

Ta có:
1/22 < 1/1.2
1/32 < 1/2.3
1/42 < 1/3.4
..................
=> 1/n2 < 1/n(n-1)
=> 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n-1)
=> A < 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/n-1 + 1/n
=> A < 1 - 1/n
Vơi n thuộc N* => 1 - 1/n < 1 ( vì 1/n lúc đó lớn hơn 0 )
=> A < 1 - 1/n < 1
đpcm

13 tháng 2 2020

Xin lỗi mình viết nhầm nha đề bài đúng nè

CMR:A=   1/3 - 2/32 + 3/33 - 4/34 + ....- 100/3100  bé hơn 3/16