![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Vũ Lê Ngọc Liên - Toán lớp 6 - Học toán với OnlineMath đây có câu giống nè :)
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2015}\right)\)
\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}...\frac{\left(1+2015\right).2015:2-1}{\left(1+2015\right).2015:2}\)
\(A=\frac{2}{2.3:2}.\frac{5}{3.4:2}...\frac{2016.2015:2-1}{2015.2016:2}\)
\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{\left(1008.2015-1\right).2}{2015.2016}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{2014.2017}{2015.2016}\)
\(A=\frac{1.2...2014}{2.3...2015}.\frac{4.5...2017}{3.4...2016}\)
\(A=\frac{1}{2015}.\frac{2017}{3}=\frac{2017}{6045}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)
\(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)
\(\Rightarrow\) \(B⋮A\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+..........+\frac{1}{2013.2015}+\frac{1}{2014.2016}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2014.2016}\right)\)
\(2A=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(2A=1-\frac{1}{2015}+\frac{1}{2}-\frac{1}{2016}\)
A= 3/4 -1/4030 - 1/ 4032
A=( 1/2-2/2 )(1/3-3/3)....(1/2015-1)
A=(-1/2)(-2/3)....(-2014/2015)
A=\(\frac{\left(-1\right)\left(-2\right).....\left(-2014\right)}{2.3....2015}\)
A=\(\frac{\left(-1\right)\left(-1\right)...\left(-1\right)\left(2014số-1\right)}{1.1.....1.2015}\)
A=1/2015