\(11^9+11^8+..........+11+1\)

CMR A chia hết cho 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

A = 119 + 118 + ... + 11 + 1

A = 119 + 118 + ... + 111 + 110

Dễ thấy: A là tổng của của 10 số hạng, mỗi số hạng là lũy thừa của 11 nên đều có tận cùng là 1

=> A có tận cùng là 0, chia hết cho 5 (đpcm)

5 tháng 11 2016

A=119+118+...........+11+1+1

vì các số trong tổng 119+118+...........+11+1 +1  đều có số tận cùng là 1

các số hạng đều có tận cùng là 1

=>119+118+...........+11 có tận cùng là 9

=> A có tận cùng là 1 => không chia hết cho 5

=> đề sai hoạc ghi nhầm đề đề có thể là

 119+118+...........+11+1

giải: 

vì các số trong tổng 119+118+...........+11+1   đều có số tận cùng là 1

các số hạng đều có tận cùng là 1

=>119+118+...........+11 có tận cùng là 9

 9+1=10 => A có tận cùng là 0 => chia hết cho 5

4 tháng 10 2015

Bài 78 :

Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1

Ta có : A có 10 số hạng

Vậy A = (...1) + (...1) + .... + (..1) = (...0)

A có chữ số tận cùng là 0 nên A chia hết cho 5

4 tháng 10 2015

78/ \(A=11^9+11^8+11^7+...+11+1\)

\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)

\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)

\(A=11^{10}\text{-}1\)

\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.

13 tháng 10 2018

\(11A=11.\left(11^9+11^8+...+11+1\right)\)

\(10A=11^{10}+11^9+...+11-\left(11^9+11^8+...+11+1\right)\)

\(A=\frac{11^{10}-1}{10}\)

VÌ 1110 có CSTC là 1

=> 1110 -1 có CSTC là 0

=> 1110-1/10 chia hết cho 5

30 tháng 7 2015

Gộp mỗi số 5 lũy thừa => Tìm chữ số tận cùng 5 lũy thừa đó (chữ số tận cùng =5)chia hết cho 5

8 tháng 10 2017

(1+11+11^2+11^3+11^4+11^5)+(11^5+11^6+11^7+11^8+11^9) chia hết cho 5

20 tháng 10 2016

Mình chỉ biết làm câu dưới thôi à 

                                                    Giải 

Nhân cả 2 vế với 5 ta có 

     5A = 5^2 + 5^3 + 5^4 +........+ 5^2014

  => 5A - A = ( 5^2 + 5^3 + 5^4 +...+ 5^2014 ) - ( 5 + 5^2 + 5^3 + .... + 5^2013 )

       4A = 5^2014 - 5

   => 4A + 5 =  5^2014 - 5 + 5

    => 4A + 5 = 5^2014 

         4A + 5 = ( 5^1009 )^2 

   Vì 5^1009 thuộc N => ( 5^1009 )^2 là 1 số chính phương 

     Vậy ......

nhớ k cho mình nha

16 tháng 11 2018

nhanh lên mk đang gấp

\(1\)

\(A=11^9+11^8+11^7+...+11+1\)

\(\Rightarrow A=11^9+11^8+11^7+...+11^1+11^0\)

\(\Rightarrow A=\left(...1\right)+\left(...1\right)+\left(...1\right)+...+\left(...1\right)+1\)

\(\Rightarrow A=\left(.....0\right)⋮5\)

\(\text{Vậy }A⋮5\)

\(2\)

\(n^2+n+1=n.n+n.1+1=n\left(n+1\right)+1\)

\(\text{Mà n ( n + 1 ) là hai số liên tiếp nên chúng là số chãn}\)

\(\Rightarrow n\left(n+1\right)+1\text{là số lẻ}\)

\(\Rightarrow\left(n^2+n+1\right)⋮4̸\)

27 tháng 7 2017

Không cần trả lời nữa đâu ha