Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S1/2=1/2+1/6+1/12+...+1/600
S1/2=1/1*2+1/2*3+....+1/24*25
S1/2=1-1/25
S1/2=24/25
S=48/25
\(S=\frac{1}{3}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{300}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{6}+\frac{1}{12}+\cdot\cdot\cdot+\frac{1}{600}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2\times3}+\frac{1}{3\times4}+\cdot\cdot\cdot+\frac{1}{24\times25}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdot\cdot\cdot+\frac{1}{24}-\frac{1}{25}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{25}\)
\(\Rightarrow\frac{1}{2}S=\frac{23}{50}\)
\(\Rightarrow S=\frac{23}{50}:\frac{1}{2}\)
\(\Rightarrow S=\frac{23}{25}\)
S = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{300}\)
= \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{600}\right)\)
= \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{24\times25}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{24}-\frac{1}{25}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{25}\right)\)
\(=2\times\frac{23}{50}\)
\(=\frac{23}{25}\)
Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)
\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)
\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)
\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)
\(A=2\times\dfrac{9}{22}\)
\(A=\dfrac{9}{11}\)
3 x 15 + 21 x 15 + 85 x 5
= 45 + 315 + 425
= 785
15 - 30 + 40
= 25
21 + 19 - 50 + 10
= 0
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=-\dfrac{1}{20}+2\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{12}\times\dfrac{3}{12}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=-\dfrac{9}{20}\)
\(3\times15+21\times15+85\times5\\ =15\times\left(3+21\right)+425\\ =15\times24+425\\ =360+425\\ =785\)
\(15-30+40\\ =\left(15+40\right)-30\\ =55-30\\ =25\)
\(21+19-50+10\\ =\left(21+19\right)-\left(50-10\right)\\ =40-40\\ =0\)
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=\dfrac{4}{20}-\dfrac{5}{20}+\dfrac{40}{20}\)
\(=\dfrac{\left(4+40\right)}{20}-\dfrac{5}{20}\)
\(=\dfrac{44}{20}-\dfrac{5}{20}\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=\dfrac{2}{20}+\dfrac{4}{20}-\dfrac{15}{20}\)
\(=\dfrac{6}{20}-\dfrac{15}{20}\)
\(=-\dfrac{9}{20}\)
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{28}\)
\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{56}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{7.8}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{8}\right)\)
\(A=2\frac{3}{8}=\frac{3}{4}\)
Ủng hộ mk nha !!! ^_^
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}\) (Tử số và mẫu số mỗi phân số nhân với 2 thì giá trị ko thay đổi)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}\)
\(A:2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A:2=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A:2=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(A=\frac{3}{8}.2=\frac{3}{4}\)
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
\(C\text{=}\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}\)
\(C\text{=}\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{10}+\dfrac{1}{15}\right)+\left(\dfrac{1}{21}+\dfrac{1}{28}\right)\)
\(C\text{=}\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}\)
\(C\text{=}\dfrac{3}{4}\)
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\)
A = 2\(\times\) ( \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)+ \(\dfrac{1}{72}\))
A =2\(\times\)( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\))
A = 2 \(\times\) ( \(\dfrac{1}{1}\)- \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\))
A = 2\(\times\)( 1 - \(\dfrac{1}{9}\))
A = 2 \(\times\) \(\dfrac{8}{9}\)
A = \(\dfrac{16}{9}\)
\(A=1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{300}\)
\(=\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{600}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{600}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\right)\)
\(=2\times\left(1-\dfrac{1}{25}\right)=2\times\dfrac{24}{25}=\dfrac{48}{25}\)