K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

ai lm xong đầu tiên tui k cho

25 tháng 12 2016

Siêu tốc tổng quát: \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)áp vào

\(A=\frac{1}{1}-\frac{1}{14}=1-\frac{1}{14}\)

25 tháng 12 2016

A=(2-1)/1.2+(3-2)/2.3+...+(14-13)/13.14

A=1-1/2+1/2-1/3+...+1/13-1/14

A=1-1/14=13/14

13 tháng 9 2016

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

12 tháng 10 2022

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

29 tháng 8 2015

A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100

A=1/1-1/100

A=100/100-1/100

A=99/100

Mk ko chép đề bài

29 tháng 8 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A==\frac{99}{100}\)

19 tháng 6 2018

Giải:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{x+1}\)

\(\Leftrightarrow A=\dfrac{x}{x+1}\)

Vậy ...

20 tháng 6 2018

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\\ A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\\ A=1-\dfrac{1}{x+1}\\ A=\dfrac{x}{x+1}\\ \)

Vậy A=\(\dfrac{x}{x+1}\)

18 tháng 3 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)

Vậy A=49/50

Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

28 tháng 12 2016

dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1

áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20

20 tháng 6 2017

A= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>A

20 tháng 6 2017

ta có : A = 1.2 + 2.3 + 3.4 + ...... + n(n + 1) 

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + n(n + 1)(n + 2)

=> 3A = n(n + 1)(n + 2)

=> A = n(n + 1)(n + 2)/3 

9 tháng 8 2016

\(A=1.2+2.3+...+n\left(n+1\right)\)

\(=>3A=\left(3-0\right).1.2+\left(4-1\right).2.3+...+\left[\left(n+2\right)-\left(n-1\right)\right].n.\left(n+1\right)\)

\(=3.1.2-0.1.2+4.2.3-1.2.3+...+\left(n+2\right).n.\left(n+1\right)-\left(n-1\right).n.\left(n+1\right)\)

\(=1.2.3-0.1.2+2.3.4-1.2.3+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\)

\(=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(=n.\left(n+1\right).\left(n+2\right)\)

\(=>A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

9 tháng 8 2016

Có 2 cách

31 tháng 8 2016

Lời giải:

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 
 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)