
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt A =\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2017^2}\)
Có: \(\frac{1}{5^2}< \frac{1}{4\cdot5};\frac{1}{6^2}< \frac{1}{5\cdot6};...;\frac{1}{2017^2}< \frac{1}{2016\cdot2017}\)
\(\Rightarrow A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2016\cdot2017}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{2016}\)
\(\Rightarrow A< \frac{503}{2016}\)
Mà: \(\frac{1}{4}=\frac{1\cdot504}{4\cdot504}=\frac{504}{2016}\)
Lại có: \(\frac{503}{2016}< \frac{504}{2016}\)
\(\Rightarrow A< \frac{504}{2016}\Rightarrow A< \frac{1}{4}\left(đpcm\right)\)

đặt S=1/2^2+1/2^3+....................+1/2^100
1/2S=1/2^3+1/2^4+....................+1/2^101
S-1/2S=1/2S=1/2^2-1/2^101<1/2
mình chả biết đúng hay sai bạn tin thi làm k tin thì thôi
thầy bàn ra đề khó quá so với giữa kì
suy ra S<1/2
đây là bài chính xcs nè hihi
1/2^2+1/2^3+..................+1/2^100<1/1.2+1/2.3+...............+1/99.100=1/2-1/99
vì 1/2-1/99<1/2 suy ra S<1/2

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{2}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow A< 1+1-\frac{1}{2014}\)
\(\Rightarrow A< 2-\frac{1}{2014}< 2\)
Vậy A < 2 (đpcm)

ta thấy \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{n^2}=\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}<1-\frac{1}{n}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}<1\left(đpcm\right)\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{98^2}+\frac{1}{100^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{97\cdot98}+\frac{1}{99\cdot100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(< 1\)

A=1.1+2.2+3.3+.....+100.100
A=1.(2-1)+2.(3-1)+.......+100.(101-1)
A=1.2+2.3+......+100.101-1-2-3-4-.......-100
3A=1.2.(3-0)+2.3.(4-1)+......+100.101.(102-99)-(1+2+3+....+100).3
3A=1.2.3+2.3.4+....+100.101.102-1.2.3-2.3.4-.....-99.100.101-(1+2+3+......+100).3
3A=100.101.102-101.100.3
3A=101.100.(102-3)
3A=101.100.99
A=101.100.33
A=(mấy tự tính)
Đặt A =\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
2A = \(2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
2A = \(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
2A - A = \(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
A = \(2-\frac{1}{2^{100}}\)
Đặt \(C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2C=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)
\(\Rightarrow2C-C=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{100}}\)
\(\Rightarrow2C-C=2+\frac{1}{2^{101}}\)