K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Vì 1/2 x 2 hay 1/3 x 3 đều bằng 1 nên ta có cách tính như sau :

Số các số hạng của dãy là :

               (50 - 1) : (2 - 1) + 1 =50 (số)

A là :

                 1 x 50 = 50

                            Đáp số: A = 50

10 tháng 7 2019

A= 24640

10 tháng 7 2019

các bạn cho minhf cách làm nhé!

3 tháng 5 2018

GIả sử trong 50 số không có 2 số nào bằng nhau. Cho a1>a2>a3>....>a50, do a1,a2,...,a50 là các số tự nhiên

\(\Rightarrow a_{50}\ge1,a_{49}\ge2,...,a_1\ge50.\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{50}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(\Leftrightarrow VT\le\left(1+\frac{1}{2}+...+\frac{1}{10}\right)+\left(\frac{1}{11}+...+\frac{1}{20}\right)\)\(+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)\)

\(+\left(\frac{1}{41}+...+\frac{1}{50}\right)\) (mỗi nhóm có 10 số hạng)

\(VT< 10+\frac{10}{11}+\frac{10}{21}+\frac{10}{31}+\frac{10}{41}< 10+1+\frac{1}{2}\)\(+\frac{1}{3}+\frac{1}{4}=\frac{145}{12}< \frac{51}{2}\)

=> Vô lí

=> đpcm

3 tháng 5 2018

Giả sử \(a_1;a_2;a_3;a_4;........;a_{50}\) là 50 số tự nhân khác nhau và \(0< a_1< a_2< a_3< ........< a_{50}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+.....+\frac{1}{a_{50}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\)

\(< 1+\frac{1}{2}+\frac{1}{2}+....+\frac{1}{2}=1+\frac{49}{2}=\frac{51}{2}\) (mâu thuẫn giả thiết)

\(\Rightarrow\)Trong 50 số trên có ít nhất 2 số bằng nhau

8 tháng 7 2015

a) Số số hạng là :

 ( 50 - 1 ) : 1 + 1 = 50 ( số )

Tổng là :

( 50 + 1 ) x 50 : 2 = 1275 

            Đáp số : 1275

b) không hiểu

24 tháng 4 2019

đáp số: 1275

12 tháng 3 2018

=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)

=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)

=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)

=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )

=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)

=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

Vậy A không phải là số tự nhiên 

9 tháng 10 2016

mình chỉ biết câu b thôi:
 

Ta biến đổi vế phải :

1-1/2+1/3-1/4+.....+1/49-1/50

=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)

=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)

=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)

=1/26+1/27+.......+1/50

Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50