
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{99.100}\right)\)
\(=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5\left(1-\frac{1}{100}\right)\)
\(=5.\frac{99}{100}\)
\(=\frac{99}{20}\)

A=1/1.2+1/2.3+...1/x =49/50
A=1-1/2+1/2-1/3+...+1/x-1-1/x=49/50
A=1-1/x=49/50
A=50/50-1=x=49/50
x=1/50
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x}=\frac{49}{50}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x-1\right)}=\frac{49}{50}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x-1}-\frac{1}{x}=\frac{49}{50}\)
\(\Rightarrow1-\frac{1}{x}=\frac{49}{50}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{50}\)
\(\Rightarrow x=50\)

Làm tiếp
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)
A=\(1-\frac{1}{100}\)
A=\(\frac{100}{100}-\frac{1}{100}\)
A=\(\frac{99}{100}\)

Nếu cắt đi 1/4 tấm bìa thì còn lại :
1 - 1/4 = 3/4 ( tấm bìa )
4 phần bằng nhau là :
3/4 : 4 = 3/16 ( tấm bìa )
p/s: t đoán thế, ko chắc, đừng ném đá


a) Gọi tổng đó là A \(A = 1/1.2 + 1/2.3 +......+ 1/99.100 \)
A = 1/1.2 + 1/2.3 +......+ 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 +.......+1/99 - 1/100
A = 1 - 1/100
A = 99/100 < 1
=> A < 1 (đpcm)
Gọi tổng trên là B
B = 1/22 + 1/32 +.......+ 1/1002
B = 1/2.2 + 1/3.3 + .......+ 1/100.100
B < 1/1.2 + 1/2.3 +......+ 1/99.100 B < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/99 - 1/100 B < 1 - 1/100
B < 99/100 < 1
=> B < 1 (đpcm)

a) {1 ; 0} ; {1 ; 4} ; {1 ; 5} ; {2 ; 0} ; {2 ; 4} ; {2 ; 5}
b) {1 ; 0 ; 4} ; {1 ; 0 ; 5} ; {1 ; 4 ; 5} ;{2 ; 0 ; 4} ; {2 ; 0 ; 5} ; {2 ; 4 ; 5}
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\left(-\frac{1}{2}+\frac{1}{2}\right)-\left(-\frac{1}{3}+\frac{1}{3}\right)-\left(-\frac{1}{4}+\frac{1}{4}\right)-....-\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)