Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét B ta có:
B=1/1.2+1/3.4+1/5.6+...+1/99.100
B=1-1/2+1/3-1/4+1/5-1/6+...+1/99-100
B=(1+1/3+1/5+...+1/99)-(1/2+1/4+...+1/100)
B=(1+1/3+1/5+...+1/99)+(1/2+1/4+1/6+...+1/100)-2(1/2+1/4+1/6+...+1/100)
B=(1+1/2+1/3+...+1/99+1/100)-(1+1/2+1/3+1/4+...+1/50)
=>B=1/51+1/52+1/53+...+1/100
=>A/B=1/51+1/52+...+1/100:1/51+1/52+...+1/100=1 (đpcm)
Đó là cách nhanh nhất để giải nếu bn ko hỉu thì mik sẽ giải chi tiết cho
chúc bn học tốt ^-^
B=1/1.2+1/3.4+1/5.6+...+1/99.100
=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100)-2(1/2+1/4+1/6+...+1/100)
=(1+1/2+1/3+1/4+...+1/100)-(1+1/2+1/3+..+1/50)
=1/51+1/52+1/53+..+1/100 (1)
A=1/51+1/52+1/53+..+1/100 (2)
(1),(2)=> A/B=1
Xét mẫu số: 1/(2x3) + 1/(3x4) + …… + 1/(99x100)
= 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100
= (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)
= (1 + 1/3 + ............ + 1/99)+(1/2+1/4+1/6+….+1/100) – (1/2+1/4+1/6+ .......... + 1/100)x2
= (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2 + 1/3 + ....... +1/50 )
= 1/51 + 1/52 + 1/53 + ............. + 1/100 (Đơn giản số trừ)
=>(1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/51 + 1/52 + 1/53 + ............. + 1/100) = 1
Bài làm:
Dạ thưa đề B bạn viết sai rồi ạ!
Ta có: \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{100}+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{2}{2}+\frac{2}{4}+\frac{2}{6}+...+\frac{2}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=A\)
\(A\div B=1\)
=> đpcm
Học tốt!!!!