Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
\(\Rightarrow x-21=0\Rightarrow x=21\)
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)( trừ cả hai vế cho 2 )
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}-\frac{x-21}{13}-\frac{x-21}{14}=0\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x-21=0\)
\(\Leftrightarrow x=21\)
Vậy \(x=21\)
\(\dfrac{x+32}{11}+\dfrac{x+33}{12}=\dfrac{x+34}{13}+\dfrac{x+35}{14}\)
\(\Leftrightarrow\left(\dfrac{x+32}{11}-1\right)+\left(\dfrac{x+33}{12}-1\right)=\left(\dfrac{x+34}{13}-1\right)+\left(\dfrac{x+35}{14}-1\right)\)
\(\Leftrightarrow\dfrac{x+21}{11}+\dfrac{x+21}{12}=\dfrac{x+21}{13}+\dfrac{x+21}{14}\)
\(\Leftrightarrow\dfrac{x+21}{11}+\dfrac{x+21}{12}-\dfrac{x+21}{13}-\dfrac{x+21}{14}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Mà \(\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Leftrightarrow x+21=0\)
\(\Leftrightarrow x=-21\)
Vậy ..
a)\(\frac{-11}{12}.x+0,25=5\)
\(\Rightarrow-\frac{11}{12}.x=5-0,25=\frac{19}{4}\)
\(\Rightarrow-\frac{11}{12}.x=\frac{19}{4}\)
\(\Rightarrow x=\frac{-57}{11}\)
b)\(\left(x-1\right)^5=-32=-2^5\)
\(\Rightarrow\left(x-1\right)=-2\)
\(\Rightarrow x=-2+1=-1\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Lời giải:
a.
$P(-1)=3(-1)^2+(-1)+74=76$
$Q(1)=-32+2.1+2=-28$
b.
$P(x)-Q(x)=3x^2+x+74-(-32+2x+2)$
$=3x^2-x+104=2x^2+(x-\frac{1}{2})^2+\frac{415}{4}>0$ với mọi $x$
Do đó $P(x)-Q(x)$ vô nghiệm.