K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2020

M = ( x + 4 )( x - 4 ) - 2x( 3 + x ) + ( x + 3 )2

= x2 - 16 - 6x - 2x2 + x2 + 6x + 9

= -7 ( đpcm )

N = ( x2 + 4 )( x + 2 )( x - 2 ) - ( x2 + 3 )( x2 - 3 )

= ( x2 + 4 )( x2 - 4 ) - ( x4 - 9 )

= x4 - 16 - x4 + 9

= -7 ( đpcm )

P = ( 3x - 2 )( 9x2 + 6x + 4 ) - 3( 9x3 - 2 )

= 27x3 - 8 - 27x3 + 6

= -2 ( đpcm )

Q = ( 3x + 2 )2 + ( 6x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 12x + 4 + 12x - 18x2 + 20 - 30x + 4 - 12x + 9x2

= -18x + 28 ( có phụ thuộc vào biến )

14 tháng 2 2020

Giải

1) 3xy2 : 5x = \(\frac{3}{5}\)y2

2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2

3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)

4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)

5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1

6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3

= 2x2 + x + 1

16 tháng 9 2019

\(F=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

Đặt \(x^2-7x=a\)

\(F=\left(a-10\right)\left(a+10\right)=a^2-100\ge-100\)

\(\Rightarrow F_{min}=-100\Leftrightarrow x^2-7x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=7\end{cases}}\)

13 tháng 6 2019

a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)

\(\Leftrightarrow14x=0\)

\(\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x = 0.

b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)

c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)

d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)

\(\Leftrightarrow41-10x=1\)

\(\Leftrightarrow-10x=40\)

\(\Leftrightarrow x=-4\)

Vậy pt có nghiệm duy nhất x = -4.

e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)

\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)

\(\Leftrightarrow8x=-13\)

\(\Leftrightarrow x=-\frac{13}{8}\)

Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)

3 tháng 7 2016

a) =x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 7 2016

\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)

b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)

c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)

d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\) 

t i c k cho mình nha

Câu 1 : 

\(a,x^3-6x^2+9x\)

\(=x\left(x^2-6x+9\right)\)

\(=x\left(x-3\right)\)

b;c tự lm nha !!! : câu 2 cx vậy 

1.b) x2 - 2xy + 3x - 6y = x2 - 2xy + 3x - 3y x 2

    = (x2 - 2xy) + (3x - 3y) x 2

    = 2x (x - y) + 3 (x - y) x 2

    = (x - y) (2x + 3 x 2)

    = (x - y) (2x + 6)

2.

(2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1)

2x4 - 3x3 + 3x2 - 3x + 1      / x2 + 1

2x4          + 2x2                  / 2x2 - 3x + 1

    0 - 3x3 + x2 - 3x + 1      /

       - 3x3         - 3x            /

             0 + x2 + 0  + 1      /

                   x2        + 1      /

                   0

=> đây là phép chia hết

Vậy (2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1) = 2x2 - 3x + 1

(Sai thì thôi)