K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(x^2\left(x-2\right)+2-x=0\)

=>\(x^2\left(x-2\right)-\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x^2-1\right)=0\)

=>(x-2)(x+1)(x-1)=0

=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\\x=-1\\x=1\end{matrix}\right.\)

b: \(x^2-9x^3=x^2-9x\)

=>\(9x^3=9x\)

=>\(x^3=x\)

=>\(x^3-x=0\)

=>\(x\cdot\left(x^2-1\right)=0\)

=>x(x-1)(x+1)=0

=>\(\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

c: \(x\left(x+2\right)+x^2=-2x\)

=>\(x\left(x+2\right)+x^2+2x=0\)

=>2x(x+2)=0

=>x(x+2)=0

=>\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d: \(\left(x+1\right)\left(x^2+4\right)=x^2+x\)

=>\(\left(x+1\right)\left(x^2+4\right)-x\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-x+4\right)=0\)

mà \(x^2-x+4=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}\forall x\)

nên x+1=0

=>x=-1

 

19 tháng 5

sao phần a câu 1 lại có +-x hả cậu

2 tháng 8 2020

a/ \(x^2\left(x-5\right)+5-x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

Vậy...

b/ \(3x^4-9x^3=-9x^2+27x\)

\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)

\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)

\(\Leftrightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)

\(x^2+3>0\forall x\)

\(\Leftrightarrow3x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy..

c/ \(x^2\left(x+8\right)+x^2=-8x\)

\(\Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\)

\(\Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\)

\(\Leftrightarrow x\left(x+8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\\x=-1\end{matrix}\right.\)

Vậy...

d/ \(\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)^2+1\right]=0\)

\(\left(x-2\right)^2+1>0\forall x\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy..

2 tháng 8 2020

Úi, câu d bạn nên làm theo cách của bạn trên đúng hơn nha :< Mình nghĩ câu d mình lập luận bị sai rồi ó

20 tháng 3 2020

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

20 tháng 3 2020

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

20 tháng 3 2020

\(a.\frac{4x-8}{2x^2+1}=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)

Vậy nghiệm của phương trình trên là \(2\)

20 tháng 3 2020

\(b.\frac{x^2-x-6}{x-3}=0\left(x\ne3\right)\\\Leftrightarrow x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\\Leftrightarrow \left(x-3\right)\left(x+2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình trên là \(-2\)

11 tháng 11 2020

a)(x+2).(x+3)-(x-2).(x+5)=10

  ( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10

 x^2 +3x+2x+6-x^2 -5x+2x+10-10=0

 2x+6=0

2x=-6

x=-3

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

6 tháng 7 2016

Bài 1:

a)-x^2+4x-5

=-(x2-4x+5)<0 với mọi x

=>-x^2+4x-5<0 với mọi x

b)x^4+3x^2+3

\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x

=>x^4+3x^2+3>0 với mọi x

c) bn xét từng th ra

Bài 2:

a)9x^2-6x-3=0

=>3(3x2-2x-1)=0

=>3x2-2x-1=0

=>3x2+x-3x-1=0

=>x(3x+1)-(3x+1)=0

=>(x-1)(3x+1)=0

b)x^3+9x^2+27x+19=0

=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)

  • Với x+1=0 =>x=-1
  • Với x2+8x+19 =>vô nghiệm

c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3

=>x3-25x-x3-8=3

=>-25x-8=3

=>-25x=1

=>x=-11/25

6 tháng 7 2016

mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là

=>-25x=11

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8

16 tháng 10 2020

Bài 1: Tìm x

a) Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-9=0\)

\(\Leftrightarrow-12x-24=0\)

\(\Leftrightarrow-12x=24\)

hay x=-2

Vậy: x=-2

b) Ta có: \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)

\(\Leftrightarrow9x^2-6x+1+2\left(x^2+6x+9\right)-11\left(x-1\right)\left(x+1\right)-6=0\)

\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18-11\left(x^2-1\right)-6=0\)

\(\Leftrightarrow11x^2+6x+12-11x^2+11=0\)

\(\Leftrightarrow6x+23=0\)

\(\Leftrightarrow6x=-23\)

hay \(x=-\frac{23}{6}\)

Vậy: \(x=-\frac{23}{6}\)

c) Ta có: \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

hay \(x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

d) Ta có: \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

Vậy: x=-3

16 tháng 10 2020

a) (2x + 1)2 - 4(x + 2)2 = 9

4x2 + 4x + 1 - 4(x2 + 4x + 4) = 9

4x2 + 4x + 1 - 4x2 - 16x - 16 = 9

-12x - 15 = 9

-12x = 9 + 15

-12x = 24

x = 12 : (-2)

x = -2

b) (3x - 1)2 + 2(x + 3)2 + 11(x + 1)(1 - x) = 6

9x2 - 6x + 1 + 2(x2 + 6x + 9) - 11(x + 1)(x - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11(x2 - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11x2 + 11 = 6

6x + 30 = 6

6x = 6 - 30

6x = -24

x = -24 : 6

x = -4

c) 8x3 - 12x2 + 6x - 1 = 0

(2x)3 - 3.(2x)2.1 + 3.2x.12 - 13 = 0

(2x - 1)3 = 0

2x - 1 = 0

2x = 1

x = 1/2

d) x3 + 9x2 + 27x + 27 = 0

x3 + 3.x2.3 + 3.x.32 + 33 = 0

(x + 3)3 = 0

x + 3 = 0

x = 0 - 3

x = -3

22 tháng 1 2019

a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)

b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x\left(x-4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;4\right\}\)

c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)

\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)

d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)

e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)

g. \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)

a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

b: =(1-2x)(1+2x)

c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

d: =(x+3)^3

e: \(=\left(2x-y\right)^3\)

f: =(x+2y)(x^2-2xy+4y^2)