K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

b, \(2x+3>0\)

\(\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)

18 tháng 6 2020

x2 + 5x = 0

<=> x( x + 5 ) = 0

<=> x = 0 hoặc x + 5 = 0

<=> x = 0 hoặc x = -5

2x + 3 > 0

<=> 2x > 0 - 3

<=> 2x > -3

<=> 2x : 2 > -3 : 2

<=> x > -3/2

3 tháng 5 2018

Giải các phương trình và bất phương trình sau :

1.1

a) \(2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-3}{2}\right\}\)

b) \(5x-3< 2x+9\)

\(\Leftrightarrow5x-2x< 3+9\)

\(\Leftrightarrow3x< 12\)

\(\Leftrightarrow x< 4\)

Tập nghiệm của BPT là : \(S=\left\{x|x< 4\right\}\)

1.2

a) \(3x+2=0\)

\(\Leftrightarrow3x=-2\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-2}{3}\right\}\)

b) \(-x+5>6-2x\)

\(\Leftrightarrow-x+2x>-5+6\)

\(\Leftrightarrow x>1\)

Tập nghiệm của BPT là : \(S=\left\{x|x>1\right\}\)

c) \(\dfrac{2x-5}{x+3}=4\)

ĐKXĐ : \(x+3\ne0\Rightarrow x\ne-3\)

\(\Leftrightarrow\dfrac{2x-5}{x+3}=\dfrac{4\left(x+3\right)}{x+3}\)

\(\Rightarrow2x-5=4x+12\)

\(\Leftrightarrow2x-4x=5+12\)

\(\Leftrightarrow-2x=17\)

\(\Leftrightarrow x=\dfrac{-17}{2}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-17}{2}\right\}\)

d) \(\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{-2;3\right\}\)

1.3

a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(2x+5-x-2\right).\left(2x+5+x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-7}{3};-3\right\}\)

b) \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{2;3\right\}\)

30 tháng 7 2016

a) = 3( x2 + 2x/6 + 1/9) + 6 -1/3 =3(x+ 1/3)+ 17/3 >0 (dpcm)

8 tháng 10 2016

dễ mà bn

dễ quá hihi

nhưng mà mình

ko ghi được

12 tháng 8 2019

a) \(3x^2-5x+2=3x^2-3x-2x+2=3x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(3x-2\right)\)

Để \(3x^2-5x+2>0\Rightarrow\left(x-1\right)\left(3x-2\right)>0\)

Suy ra x - 1 và 3x - 2 đồng dấu. Xét hai trường hợp:

\(\left\{{}\begin{matrix}x-1>0\\3x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>\frac{2}{3}\end{matrix}\right.\Leftrightarrow x>1\)

TH2; \(\left\{{}\begin{matrix}x-1< 0\\3x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< \frac{2}{3}\end{matrix}\right.\Leftrightarrow x< \frac{2}{3}\)

b) Tí làm

12 tháng 8 2019

b) \(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2>0\forall x\) nên bất phương trình trên luôn đúng

7 tháng 9 2016

a) Ta có: x+ 4x +5 = ( x2 + 4x + 4 ) +1 =  (x+2)2  + 1  >= 1 >0 với mọi x

b) Ta có : 4x- 4x +2 = ( 4x- 4x +1 ) + 1 = (2x+1) > 0 với mọi x

c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )+ 7/4 >0 với mọi x 

mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số 

7 tháng 9 2016

a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0

b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0

c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75  > 0

d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75  > 0

e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75  > 0

26 tháng 8 2020

a) 5x( x - 1 ) = x - 1

<=> 5x2 - 5x = x - 1

<=> 5x2 - 5x - x + 1 = 0

<=> 5x2 - 6x + 1 = 0

<=> 5x2 - 5x - x + 1 = 0

<=> 5x( x - 1 ) - 1( x - 1 ) = 0

<=> ( x - 1 )( 5x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

b) 2( x + 5 ) - x2 - 5x = 0

<=> 2x + 10 - x2 - 5x = 0

<=> -x2 - 3x + 10 = 0

<=> -x2 - 5x + 2x + 10 = 0

<=> -x( x + 5 ) + 2( x + 5 ) = 0

<=> ( x + 5 )( 2 - x ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

c) x2 - 2x - 3 = 0

<=> x2 + x - 3x - 3 = 0

<=> x( x + 1 ) - 3( x + 1 ) = 0

<=> ( x + 1 )( x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

d) 2x2 + 5x - 3 = 0

<=> 2x2 - x + 6x - 3 = 0

,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0

<=> ( 2x - 1 )( x + 3 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

26 tháng 8 2020

a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0

<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0 

<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0

<=> x = 1 hoặc x = 1/5

b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0

<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5

c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0 

<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0 

<=> x = 3 hoặc x = -1

d) 2x2  + 5x - 3 = 0

Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1

Khi đó : x = -1 hoặc x = 3/2  

a: \(VT=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\forall x,y\)

c: \(VT=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x,y\)