K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

a) Thay x = 98 vào biểu thức ta được:

   982 + 4.98 + 4

= 982 + 2.2.98 + 22

= ( 98 + 2)

= 100= 10000

b) Thay x= 99 vào biểu thức ta được:

   993 +3.992 + 3.99 +1

= 993 + 3.992.1 + 3.99.12 +13

= ( 99 + 1)3

= 1003 = 1000000

27 tháng 9 2017

a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x+ 2)2

Với x = 98: (98+ 2)2 =1002 = 10000

b) x3 + 3x2 + 3x + 1 = x3 + 3 . 1 . x2 + 3 . x .12+ 13 = (x + 1)

Với x = 99: (99+ 1)3 = 1003 = 1000000



 

27 tháng 9 2017

áp dụng hằng đẳng thức thứ 1

a) \(\left(x+2\right)^2\)

Thay x = 98 :

\(\left(98+2\right)^2\)\(=100^2=10000\)

Áp dụng hằng đẳng thức thứ 4

\(\left(x+1\right)^3\)

Thay x = 99

\(\left(99+1\right)^2\)\(=100^2=10000\)

26 tháng 8 2016

a ) \(x^2+4x+4\)

\(=x^2+2.x.2+2^2\)

\(=\left(x+2\right)^2\)

Khi \(x=98\) , ta có : 

\(\left(98+2\right)^2\)

\(=100^2=10000\)

\(x^3+3x^2+3x+1\)

\(=x^3+3.x^2.1+3.x.1^2+1^3\)

\(=\left(x+1\right)^3\)

Khi \(x=99\) , ta có : 

\(\left(99+1\right)^2\)

\(=100^2=10000\)

26 tháng 8 2016

phân tích ra thành 7 hằng đẳng thức đáng nhớ ý 

20 tháng 4 2017

Bài giải:

a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x+ 2)2

Với x = 98: (98+ 2)2 =1002 = 10000

b) x3 + 3x2 + 3x + 1 = x3 + 3 . 1 . x2 + 3 . x .12+ 13 = (x + 1)3

Với x = 99: (99+ 1)3 = 1003 = 1000000

15 tháng 5 2017

a). x2+4x+4=(x+2)2 ta thay x=98 vào hằng đẳng thức ta được:(98+2)2=1002=10000

b).x3+3x2+3x+1=(x+1)3 ta thay x=99 vào hđt ta được (99+1)3=1003=1000000

13 tháng 7 2016

Bài 1:

a) \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)

\(=2a.2b\)

\(=4ab\)

13 tháng 7 2016

Câu 1:

a) (a +b )2 - ( a -b )2

=a2+b2-a2+b2

=2b2

 b) (a + b )3- ( a - b )3 - 2b3

=a3+b3-a+b3-2b3

=a3-a

c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2

=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2

=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2

=0

18 tháng 9 2016

\(A=x^3-3x^2+3x-1\\ A=x^3-3x^2.1+3x.1^2-1^3\\ A=\left(x-1\right)^3\)

Thay x=101 vào biểu thức trên ta được kết quả là 100^3= 1000000

18 tháng 9 2016

Khi x= 101

\(A=x^3-3x^2-3x-1\)

\(\Rightarrow A=101^3-3.101^2-3.101-1\)

\(\Rightarrow A=999394\)

tíc mình nha

26 tháng 10 2016

a) ( 3x3 + 4x2y) : x2 - ( 10xy + 15y2) : (5y)

= ( 3x + 4y) - ( 2x + 3y)

= 7xy - 5xy

thay x = 2,y= -5 vào biểu thức,ta có:

{7.2.(-5)} - { 7.2.(-5)} = -70b) (3x4 + 1/3x2

1 tháng 8 2018

Bài 1:

a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)

\(\Rightarrow4\left(x-2\right)-3x+4=0\)

\(\Rightarrow4x-8-3x+4=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)

\(\Rightarrow10x+35-15x-6=25\)

\(\Rightarrow-5x+29=25\)

\(\Rightarrow-5x=25-29\)

\(\Rightarrow-5x=-4\)

\(\Rightarrow x=\dfrac{4}{5}\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Rightarrow-x-21=0\)

\(\Rightarrow x=-21\)

Bài 2:

a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(P=8x^2y-6y^2-9x^2y+12y^2\)

\(P=-x^2y+6y^2\)

Thay x = -1 ; y = 2 vào P ta được

\(P=-\left(-1\right)^2.2+6.2^2\)

\(P=-2+24=22\)

b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(Q=20x^3-12x^2y-4x^3-x^2y\)

\(Q=16x^3-13x^2y\)

Thay x = -1 ; y = 2 vào Q ta được

\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)

\(Q=-16-26\)

\(Q=-42\)

c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)

\(H=2xy\)

Thay x = 1/4 ; y = 2012 vào H ta được

\(H=2.\dfrac{1}{4}.2012\)

\(H=1006\)

1 tháng 8 2018

1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Leftrightarrow8x-16-6x+8=2\)

\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)

b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Leftrightarrow30x-20-15x-6+55-20x=25\)

\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)

\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)

2.

a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)

\(\Leftrightarrow x^2y-18y^2\)

tại x=-1 , y=2

ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)

vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2

b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)

\(\Leftrightarrow17x^3-13x^2y\)

tại x=-1,y=2

ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)

vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)

c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)

\(\Leftrightarrow x^4+2xy-x^3\)

tại x=1/4 và y=2012

ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)