Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-x2-6x+11
=-(x2+6x)+11
=-[(x2+2.x.3+9)-9]+11
=-[[(x+3)2-9]]+11
= -(x+3)2 + 9+11
= - (x+3)2 + 20
Ở dấu = thứ 3 bạn lm sai r nha.
Khi tách 1 hạng tử ở trong ngoặc ra ngoài ngoặc mà trc ngoặc có dấu trừ thì phải đổi dấu, do đó -9 trở thành 9
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1
\(A=5-2x^2-4x=-2-2x^2-4x+7=-2\left(x-1\right)^2+7\le0+7=7\Rightarrow A_{max}=7.\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\Rightarrow\frac{1}{x^2-6x+11}\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)
kl: ...
b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
kl:....
a, \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)
\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b, \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-6\right)\)
\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)
\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)
\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)
Chúc bạn học tốt!!!
a) \(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy AMin = 2 , đạt được khi x = 3
b) \(B=5x-x^2=-x^2+5x=-x^2+5x-\frac{25}{4}+\frac{25}{4}=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
Vậy BMax = 25/4 , đạt được khi x = 5/2
c) \(2x-2x^2-5=-2x^2+2x-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(-2\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy CMax = -9/2 , đạt được khi x = 1/2
a)
\(\left(1-x^3\right)+\left(6x-6x^2\right)=\left(1-x\right)\left[\left(x^2+x+1\right)+6x\right]=\left(1-x\right)\left(x^2+7x+1\right)\)b) check lại đề
c)
(x+4)^2 (x^2 -1) -(x^2 -1) =(x^2 -1)[(x+4)^2 -1]
\(\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(A=x^2-6x+9+2\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
\(A=x^2-6x+11\) <=> \(A=x^2-6x+3^2+2\)
<=> \(A=\left(x-3\right)^2+2>2\)
=> đa thức sau vô nghiệm