Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1
a) x3-3x2+3x-1=0
⇔ ( x - 1 )\(^3\) = 0
⇔ x - 1 = 0
⇔ x = 1
b) 4x3-36x=0
⇔ 4x ( x\(^2\) - 9 ) = 0
⇔ 4x ( x - 3 ) ( x + 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
c) x6-1=0
⇔ x\(^6\) = 1
⇔ x = \(\pm\)1
d) x3-6x2+12x-8 = 0
⇔ ( x - 2 )\(^3\) = 0
⇔ x - 2 = 0
⇔ x = 2
C= (x2-10x+25)-4y2
= ( x - 5 )\(^2\) - 4y\(^2\) = ( x - 5 - 4y ) ( x - 5 + 4y )
E= x2-6xy+9y2 = ( x - 3y )\(^2\)
F=x3+6x2y+12xy2+8y3 = ( x + 2 )\(^3\)
G= x3-64 = ( x - 4 ) ( x\(^2\) + 4x +16 )
H= 125x3+y6 = ( 5x )\(^3\) + ( y\(^2\) )\(^3\) = ( 5x + y\(^2\) ) ( 25x\(^2\) - 5xy\(^2\) + y\(^4\) )
\(a,A=-x^2-6x-10=-\left(x^2+6x+9\right)-1=-\left(x+3\right)^2-1\le-1\)
Dấu = xảy ra ⇔ x +3 =0 ⇔ x = -3
\(Max_A=-1\text{ ⇔}x=-3\)
\(b,B=12x-4x^2+3=-\left(4x^2-12x+9\right)+12=-\left(2x-3\right)^2+12\le12\)
Dấu = xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
\(Max_B=12\text{ ⇔}x=\dfrac{3}{2}\)
\(c,8x-8x^2+3=-8\left(x^2-x+\dfrac{1}{4}\right)+5=-8\left(x-\dfrac{1}{2}\right)^2+5\le5\)
\(d,-x^2-8x+2018-y^2+4y\)
\(=-\left(x^2+8x+16\right)-\left(y^2-4y+4\right)+2038\le2038\)
\(e,-4x^4-12x^2+11=-\left(4x^4+12x^2+9\right)+20=-\left(2x^2+3\right)^2+20\le20\)
\(f,C=x-\dfrac{x^2}{4}\Rightarrow4C=4x-x^2\)\(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)
\(\Rightarrow C=-\dfrac{\left(x-2\right)^2}{4}+1\le1\)
\(g,D=x-\dfrac{9x^2}{25}\Rightarrow25D=-\left(9x^2-25x\right)=-\left(9x^2-2.3x.\dfrac{25}{6}+\dfrac{625}{36}\right)+\dfrac{625}{36}=-\left(3x-\dfrac{25}{6}\right)^2+\dfrac{625}{36}\)
\(\Rightarrow D=\dfrac{-\left(3x-\dfrac{25}{6}\right)^2}{25}+\dfrac{25}{36}\le\dfrac{25}{36}\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
bài 1 điền vào chỗ trống
a) x2 + 4x + 4
= (x + 2)2
b) x2 - 8x + 16
= (x - 4)2
c) x3 +12x2 + 48x + 64
= (x + 4)3
d) x3 - 6x + 12x - 8
= (x - 2)3
e) x2 + 2x + 1
= (x + 1)2
f) x2 - 1
= (x - 1)(x + 1)
g) x2 - 4x + 4
= (x - 2)2
h) x2 - 4
= (x - 2)(x + 2)
i) x2 + 6x + 9
= (x + 3)2
j) 4x2 - 9
= (2x - 3)(2x + 3)
k) 16x2 - 8x + 1
= (4x - 1)2
l) 9x2 + 6x + 1
= (3x + 1)2
m) 36x2 + 36x + 9
= (6x + 3)2
n) x3 + 27
= (x + 3)(x2 - 3x + 9)
o) 17x3 + 27 (Đề sai)
\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)
a) \(\left(x-2\right)^2\)
b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)
d) \(\left(x+1\right)^3\)
e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)
f) \(\left(x+3\right)^2\)
g) \(-\left(x-5\right)^2\)
h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)