Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-y^2+3\right)^2+\left(y+1\right)^2=0\)(1)
Ta thấy VT(1) >= 0 với mọi x,y nên để bằng 0 khi và chỉ khi:
\(\hept{\begin{cases}x-y^2+3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=-2\end{cases}}\)
b) \(\left|x\right|+\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=6x\)(2)
- Nếu x<0 thì VP(2) <0; VT(2) >=0 với mọi x. Loại.
- Nếu x>=0 thì: x+1>0; x+2>0; x+3>0 nên (2) trở thành:
\(x+x+1+x+2+x+3=6x\)
\(\Leftrightarrow2x=6\Leftrightarrow x=3\)(TM x>-0)
KL: Nghiệm của PT là x=3.
a) 2xy + 4x - y + 5 = 0
=> 2x(y + 2) - y - 2 + 5 = - 2
=> 2x(y + 2) - (y + 2) = - 2 - 5
=> (2x - 1)(y + 2) = - 7
Ta có -7 = -1.7 = -7.1
Lập bảng xét các trường hợp
2x - 1 | 1 | -7 | -1 | 7 |
y + 2 | -7 | 1 | 7 | -1 |
x | 1 | -3 | 0 | 4 |
y | -9 | -1 | 5 | -3 |
Vậy các cặp (x;y) thỏa mãn là (1;-5) ; (-3 ; -1) ; (0 ; 5) ; (4 ; -3)
b) \(\frac{1}{3}-\frac{2}{y}=\frac{x}{2}\left(y\ne0\right)\)
=> \(\frac{x}{2}+\frac{2}{y}=\frac{1}{3}\)
=> \(\frac{xy+4}{2y}=\frac{1}{3}\)
=> 3(xy + 4) = 2y
=> 3xy + 12 = 2y
=> 2y - 3xy = 12
=> y(2 - 3x) = 12
Ta có 12 = 4.3 = 2.6 = 1.12 = -1.(-12) = (-2).(-6) . (-4).(-3)
Lập bảng xét các trường hợp
y | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
2 - 3x | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | -14/3 | 1/3 | 14/3 | 1(tm) | -2/3 | -1/3 | 2(tm) | 5/3 | -4/3 | 0(tm) | 8/3 | 4/3 |
Vậy các cặp (y;x) nguyên thỏa mãn là (-12 ; 1) ; (-3 ; 2) ; (6;0)