Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\left(x-4\right)\left(x+4\right)-\left(1+2x\right)^2\)
\(=\left(x^2-16\right)-\left(1+4x+2x\right)\)
\(=x^2-16-1-4x-4x^2\)
\(=-17-4x-3x^2\)
Vậy ...
b) \(\left(3-2y\right)^2-\left(y-6\right)\left(y+6\right)\)
\(=9-12y+4y^2-\left(y^2-36\right)\)
\(=9-12y+4y^2-y^2+36\)
\(=45-12y+3y^2\)
Vậy ...
c) \(3x\left(x-5\right)-\left(x+7\right)\left(x-7\right)\)
\(=3x^2-15x-\left(x^2-49\right)\)
\(=3x^2-15x-x^2+49\)
\(=2x^2-15x+49\)
Vậy ...
Bài 1.
a) x2 + 7x +12 = 0
Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)
Phương trình có 2 nghiệm phân biệt:
x1 = \(\frac{-7+1}{2}=-3\)
x2= \(\frac{-7-1}{2}=-4\)
Bài 1
b) 2x2 + 5x - 3=0
Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)
Phương tình có 2 nghiệm phân biệt:
x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)
x2 = \(\frac{-5-7}{2.2}-3\)
c) 3x2 +10x+7 = 0
Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)
Phương tình có 2 nghiệm phân biệt:
x1= \(\frac{-10+4}{2.3}=-1\)
x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)
a) x2 - 2x - 4y2 - 4y
= (x2 - 4y2) - (2x + 4y)
= (x + 2y)(x - 2y) - 2(x + 2y)
= (x + 2y)(x - 2y - 2)
= (x + 2y)[x - 2(y + 1)]
b) x4 + 2x3 - 4x - 4
= (x4 - 4) + ( 2x3 - 4x)
= (x2 - 2)(x2 + 2) + 2x(x2 - 2)
= (x2 - 2)(x2 + 2 + 2x)
c) x3 + 2x2y - x -2y
= (x3 - x) + (2x2y - 2y)
= x(x2 - 1) + 2y(x2 - 1)
= (x + 2y)(x2 - 1)
1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)
\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)
\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)
\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)
\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)
\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)
\(=\left(x-9y\right)\left(9x-y\right)\)
4. \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
5. \(a^3x-ab+b-x\)
\(=a^3x-x-ab+b\)
\(=x\left(a^3-1\right)-b\left(a-1\right)\)
\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)
6. \(x^3-64=x^3-4^3\)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
7. \(0,125\left(a+1\right)^3-1\)
\(=\left[0,5\left(a+1\right)\right]^3-1^3\)
\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)
\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)
\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)
8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)
\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)
\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)
\(=\left(2x+22\right)\left(4x+8\right)\)
9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-1\right)\)
11. \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)