Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
Bài 1 :
a, \(\frac{3}{4}:x=\frac{5}{12}\)
\(x=\frac{3}{4}:\frac{5}{12}\)
\(x=\frac{9}{5}\)
b, \(x-\frac{1}{2}=\frac{3}{4}:\frac{3}{2}\)
\(x-\frac{1}{2}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{2}\)
\(x=1\)
c, \(1\frac{1}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x=\frac{3}{4}+\frac{1}{2}\)
\(\frac{3}{2}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{3}{2}\)
\(x=\frac{5}{6}\)
Bài 2 :
\(A=\frac{-3}{5}+\left(\frac{-2}{5}-99\right)\)
\(A=\frac{-3}{5}+\frac{-2}{5}-99\)
\(A=\left(-1\right)-99\)
\(A=-100\)
\(B=\left(7\frac{2}{3}+2\frac{3}{5}\right)-6\frac{2}{3}\)
\(B=\left(\frac{23}{3}+\frac{13}{5}\right)-\frac{20}{3}\)
\(B=\frac{23}{3}+\frac{13}{5}-\frac{20}{3}\)
\(B=\left(\frac{23}{3}-\frac{20}{3}\right)+\frac{13}{5}\)
\(B=1+\frac{13}{5}\)
\(B=\frac{18}{5}\)
C=(1x3+3x5+...+99x101)+(2x4+4x6+...+98x100)
đặt S=1x3+3x5+...+99x101
=>6S=6x(1x3+3x5+...+99x101)
=1x3x(5+1)+3x5x(7-1)+...+97x99x(101-95)+99x101x(103-97)
=1x3x5+1x3x1+3x5x7-1x3x5+....+97x99x101-95x97x99+99x101x103-97x99x101
=1x3x1+99x101x103
=>S=(3+99x101x103):6=171650
=>C=171650+(2x4+4x6+...+98x100)
đặt A=2x4+4x6+...+98x100
=>6A=6x(2x4+4x6+...+98x100)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100
=98x100x102
=>A=98x100x102:6=166600
=>C=166600+171650
=>C=338250
B=2x2+4x4+6x6+...+100x100
=2x(4-2)+4x(6-2)+6x(8-2)+...+100x(102-2)
=2x4-4+4x6-8+6x8-12+...+100x102-200
=(2x4+4x6+6x8+...+100x102)-(4+8+12+...+200)
đặt A=2x4+4x6+...+98x100+100x102
=>6A=6x(2x4+4x6+...+98x100+100x102)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)+100x102x(104-98)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100+100x102x104-98x100x102
=100x102x104
=>A=100x102x104:6=176800
=>B=176800-(4+8+12+...+200)
đặt S=4+8+12+..+200
Số số hạng của S là:
(200-4):4+1=50 số
S=(200+4)x50:2=5100
=>B=176800-5100
=>B=171700
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
a) 27 : x -\(\frac{1}{2}=\frac{15}{7}:5\)
27 : x -\(\frac{1}{2}\)= \(\frac{3}{7}\)
27 : x = \(\frac{3}{7}+\frac{1}{2}\)
27 : x =\(\frac{6}{14}+\frac{7}{14}\)
27 : x = \(\frac{13}{14}\)
x = 27 : \(\frac{13}{14}\)
x = 27 . \(\frac{14}{13}\)
x = \(\frac{378}{13}\)
b) 2 . x - \(\frac{3}{4}\)= \(\frac{15}{9}.\frac{3}{5}\)
2 . x - \(\frac{3}{4}\)= 1
2 . x = 1 + \(\frac{3}{4}\)
2 . x = \(\frac{7}{4}\)
x = \(\frac{7}{4}:2\)
x = \(\frac{7}{8}\)
cho mình đúng nha
a) (x-2)*(-5-x^2)>0
\(\Rightarrow\orbr{\begin{cases}x-2>0\\-5-x^2>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x^2=-5\end{cases}}\)
=>x=2 (vì x2\(\ge0\))
Vậy....