Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kho..............wa...................troi................thi......................ret.....................ai..............tich...............ung.....................ho....................minh..................voi................ret............wa
a.(x+10) /(4*x)-8* 4 -(2*x)/x+2
-(127*x-10)/(4*x)
(5/2-127*x/4)/x
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3\right)+ 4\left(x^2+x+1-3\right)=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+5\right)=0\)
\(\Leftrightarrow x^2+x+4=0\) hay \(x^2+x-2=0\)
\(\Leftrightarrow x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{15}{4}=0\) hay \(x^2-x+2x-2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) (pt vô nghiệm) hay\(x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=1\) hay \(x=-2\)
-Vậy \(S=\left\{1;-2\right\}\)
b) \(x^3+5x^2-10x-8=0\)
\(\Leftrightarrow x^3-2x^2+7x^2-14x+4x-8=0\)
\(\Leftrightarrow x^2\left(x-2\right)+7x\left(x-2\right)+4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+7x+4\right)=0\)
\(\Leftrightarrow x=2\) hay \(x^2+2.\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{33}{4}=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}\right)^2-\dfrac{33}{4}=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}+\dfrac{\sqrt{33}}{2}\right)\left(x+\dfrac{7}{2}-\dfrac{\sqrt{33}}{2}\right)=0\)
\(\Leftrightarrow x=2\) hay \(x=\dfrac{-7-\sqrt{33}}{2}\) hay \(x=\dfrac{-7+\sqrt{33}}{2}\)
-Vậy \(S=\left\{2;\dfrac{-7-\sqrt{33}}{2};\dfrac{-7+\sqrt{33}}{2}\right\}\)
3, \(\left(x-2\right)^2-5\left(2-x\right)=0\Leftrightarrow\left(2-x\right)^2-5\left(2-x\right)=0\)
\(\Leftrightarrow\left(2-x-5\right)\left(2-x\right)=0\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow x=-3;x=2\)
4, \(x^3-8+2x^2-4x=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)^2=0\Leftrightarrow x=\pm2\)
5, \(x^2\left(x-3\right)+18-6x=0\Leftrightarrow x^2\left(x-3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-6\right)\left(x-3\right)=0\Leftrightarrow x=\pm\sqrt{6};x=3\)
tìm x
3, ( x - 2 ) mũ 2 - 5( 2 - x ) = 0
x=-3, x=2
4, ( x mũ 3 - 8 ) + 2x mũ 2 - 4x = 0
x= 2 , x= -2
5, x mũ 2 ( x - 3 ) + 18 - 6x = 0
x=-căn bậc hai(6), x=căn bậc hai(6), x=3
a) Ta có : 6x(3x + 5) - 2x(9x - 2) + (17 - x)(x - 1) + x(x - 18) = 0
<=> 18x2 + 30x - 18x2 + 4x + 17x - 17 - x2 + x + x2 - 18x = 0
<=> 34x - 17 = 0
<=> 34x = 17
=> x = 2
a, \(\left|x-1\right|=20\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=20\\x-1=-20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=21\\x=-19\end{matrix}\right.\)
b, đk : x =< 18/3
\(\Leftrightarrow\left[{}\begin{matrix}x-2=18-3x\\x-2=3x-18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=8\left(ktm\right)\end{matrix}\right.\)
c, <=> | x - 2 | = 18 - 4x
đk : x =< 18/4 = 9 /2
\(\Leftrightarrow\left[{}\begin{matrix}x-2=18-4x\\x-2=4x-18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{16}{3}\left(ktm\right)\end{matrix}\right.\)
a)\(\left|x-1\right|-8=12\Rightarrow\left|x-1\right|=20\)
\(\Rightarrow\left[{}\begin{matrix}x-1=20\\x-1=-20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=21\\x=-19\end{matrix}\right.\)
b)\(\left|x-2\right|=18-3x\)
\(\Rightarrow\left[{}\begin{matrix}x-2=18-3x\\x-2=3x-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=20\\-2x=-16\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=8\end{matrix}\right.\)
c)\(\left|x-2\right|-18+4x=0\)
\(\Leftrightarrow\left|x-2\right|=18-4x\)
Làm tương tự câu b