Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để phân số đã cho có giá trị nguyên thì:
$n+9\vdots n-6$
$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$
Mà $n>6$ nên $n-6>0$
$\Rightarrow n-6\in\left\{1;3;5;15\right\}$
$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$
b.
Gọi $d=ƯCLN(n+9, n-6)$
$\Rightarrow n+9\vdots d; n-6\vdots d$
$\Rightarrow (n+9)-(n-6)\vdots d$
$\Rightarrow 15\vdots d$
Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$
Điều này xảy ra khi:
$n-6\not\vdots 3; n-6\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.
Do phân số \(\frac{n+9}{n-6}\)nguyên dương
=> n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
Do n - 6 chia hết cho n - 6 => 15 chia hết cho n - 6
Mà n > 6 => n - 6 > 0 => \(n-6=15\)
=> n = 21
Mk nghĩ chỗ điều kiện n < 6 fai sửa thành n > 6 ms đúng đó
a) n+9n−6=n−6+15n−6=1+15n−6n+9n−6=n−6+15n−6=1+15n−6
Để phân số có giá trị là số tự nhiên điều kiện là:
n−6∈Ư(15)={1;3;5;15}n−6∈Ư(15)={1;3;5;15}vì n > 6
=> n∈{7;9;11;21}n∈{7;9;11;21} thỏa mãn
b) Đặt: (n+9;n−6)=d(n+9;n−6)=d với d là số tự nhiên
=> \hept{n+9⋮dn−6⋮d⇒15⋮d\hept{n+9⋮dn−6⋮d⇒15⋮d=> d∈Ư(15)={1;3;5;15}d∈Ư(15)={1;3;5;15}
Với d = 3 => \hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3\hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3=> Tồn tại số tự nhiên k để n = 3k ( k>2)
Với d = 5 => \hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5\hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5=> Tồn tại stn h để: n + 4 = 5 h <=> n = 5h - 4 ( h > 2)
Do đó để phân số trên là tốn giản
<=> d = 1 => n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2
Vậy n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2
a: Để A là số tự nhiên thì n-6+15 chia hết cho n-6
=>\(n-6\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
mà n>6
nên \(n\in\left\{7;9;11;21\right\}\)
b: \(A=\dfrac{n-6+15}{n-6}=1+\dfrac{15}{n-6}\)
Để A là phân số tối giản thì ƯCLN(n-9;n-6)=1
=>ƯCLN(15;n-6)=1
=>n-6<>3k và n-6<>5k
=>\(n\notin\left\{3k+6;5k+6\right\}\)
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)